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Abstract	
This	paper	 is	 concerned	with	 the	 third‐order	boundary	 value	problem	with	 integral	
boundary	 conditions.By	 applying	 iterative	 techniques,	 we	 obtain	 the	 existence	 of	
monotone	positive	solutions.	
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1. Introduction	

Third‐order	differential	equations	arise	in	a	variety	of	different	areas	of	applied	mathematics	
and	physics,e.g.,	in	the	deflection	of	a	curved	beam	having	a	constant	or	varying	cross	section,	
a	three‐layer	beam,	electromagnetic	waves	or	gravity	driven	flows	and	so	on	[9].	
Third‐order	two‐point	or	multi‐point	boundary	value	problems	(BVPs	for	short)	have	attracted	
a	lot	of	attention	[2,	5,	10–16,	18–21].	For	example,	in	2008,	Sun	[18]	studied	the	existence	of	
nondecreasing	 positive	 solutions	 for	 the	 nonlinear	 third‐order	 two	 point	 boundary	 value	
problem	
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The	iterative	schemes	for	approximating	the	solutions	are	obtained	by	applying	a	monotone	
iterative	method.	On	the	other	hand,	BVPs	with	integral	boundary	conditions	have	been	used	
in	 the	description	of	many	phenomena	 in	 the	applied	sciences.	 It	cover	multi‐point	BVPs	as	
special	cases.	Recently,	third‐order	BVPs	with	integral	boundary	conditions	have	attracted	the	
attention	of	some	authors.	we	refer	 the	readers	to	[3,	4,	6–8,	17,	22,	23]	and	the	references	
therein.	It	is	worth	mentioned	that,	in	2009,	Boucherif,	Bouguima,	Al‐Malki	and	Benbouziane	
[4]	studied	the	nonlinear	third	order	differential	equations	with	integral	boundary	conditions	
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They	 provided	 sufficient	 conditions	 on	 the	 nonlinearity	 and	 the	 functions	 appearing	 in	 the	
boundary	conditions	that	guarantee	the	existence	of	at	least	one	solution	to	the	problem.	Their	
technique	 is	 based	 on	 a	 priori	 bounds	 and	 fixed	 point	 theorems.	 In	 2010,	 Sun	 and	 Li	 [17]	
concerned	 with	 the	 following	 third‐order	 boundary	 value	 problem	with	 integral	 boundary	
conditions	
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By	using	the	Guo‐Krasnoselskii	fixed	point	theorem,	some	sufficient	conditions	are	obtained	for	
the	existence	and	nonexistence	of	monotone	positive	solution	to	the	above	problem.	
In	 this	paper,	we	are	 concerned	with	 the	 following	 third‐order	BVP	with	 integral	boundary	
conditions	

																																										(P)	

By	applying	iterative	methods,	we	not	only	obtain	the	existence	of	monotone	positive	solutions,	
but	also	establish	iterative	schemes	for	approximating	the	solutions.	Here,	monotone	positive	
solutions	mean	nondecreasing,	nonnegative	and	nontrivial	 solutions.	We	do	not	 rely	on	 the	
Guo‐Krasnoselskii	fixed	point	theorem	and	the	technique	which	is	based	on	a	priori	bounds	and	
fixed	point	theorems.	Our	main	tool	is	the	following	theorem.	
Theorem	1:	[1]	LetK 	be	a	normal	cone	of	a	Banach	space	 E 	and	 0 0v w .		

Suppose	that	
( 1a ) 0 0:[ , ]T v w E 	is	completely	continuous;	

( 2a )	T 	is	monotone	increasing	on	 0 0[ , ]v w ;	

( 3a )	 0v 	is	a	lower	solution	of	T ,	that	is,	 0 0v Tv 	;		

( 4a )	 0w 	is	an	upper	solution	of	T ,	that	is,	 0 0Tw w .	Then	the	iterative	sequences		

1n nv Tv  	and	 1n nw Tw  	(   1,  2,  3,  n   )		

satisfy	

0 1 1 0              n nv v v w w w          	

	

  0n n
v




and	  0n n

w



converge	tov 	,	  0 0,w v w which	are	fixed	points	of	T .respectively.	

Throughout	this	paper,	we	always	assume	that	a , f ,	 g 	satisfy:	

( 1A )		 ([0,1] [0, ))a C   and	a 	is	not	identically	zero,	

( 2A )		 ([0,1] [0, ) [0, ),[0, ))f C      	

( 3A )		 ([0,1] [0, ))g C   .	

2. Preliminaries	

For	convenience,	we	denote
1

0
( ) .tg t dt   	

Lemma	1:	Let	 1.  .	Then	for	any	 [0,1]h C ,	the	BVP	
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has	a	unique	solution	
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Where	
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Proof.	Let	u	be	a	solution	of	the	BVP	(1).	Then	we	may	suppose	that		
	

1 2

0
( ) ( , ) ( ) , [0,1]u t G t s h s ds At Bt C t     	

	
By	the	boundary	conditions	in	formula	(1),	we	have	
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Therefore,	the	BVP	(1)	has	a	unique	solution	
	

1 1

0 0
( ) [ ( , ) ( , ) ( ) ] ( ) , [0,1].

1

t
u t G t s G s g d h s ds t  


  

  	

	

Lemma	2:	[18]	For	any	    ( , ) 0,1 0,1t s   ,	
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3. Main	Results		

In	the	remainder	of	this	paper,	we	always	assume	that	 1  .	If	we	denote	

1

0

1
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Theorem	2:	Assume	that ( ,0,0)f t is	not	identically	zero	on 0,1 and	there	exists	a	constant

0R  such	that	
	

1 1 2 2( , , ) ( , , )f t u v f t u v R   ,0 1t  , 1 20 u u R   , 1 20 v v R   																										(3)	

	
then	the	BVP	(1)	has	monotone	positive	solutions.	

Proof.	Let	 1[0,1]C 	be	equipped	with	the	norm	  [0,1] [0,1]
max max ( ) ,max ( )

t t
u u t u t

 
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And	
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 : ( ) 0  ( ) 0  [0,1] .K u E u t and u t for t     	

	
Then	K is	a	normal	cone	in	Banach	space	 E .	Now,	we	define	an	operator :T K E by	
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which	together	with( 1A )( 2A )( 3A )and	Lemmas	(2)	implies	that :T K K .	Obviously,	the	fixed	
points	of	T are	the	monotone	nonnegative	solutions	of	the	BVP	(P).	
Let	 0 ( ) 0v t  ,	 0 ( )w t Rt ,	 [0,1]t .	We	divide	our	proof	into	the	following	steps:	

Step	1.	We	verify	that	 0 0:[ , ]T v w K is	completely	continuous.	

First,	we	prove	that	T is	a	compact	operator.	Let	D 	is	a	bounded	set	in	 0 0[ , ]v w .	We	will	prove	
that	 ( )T D 	is	relatively	compact	inK .	

For	any	  1
( ) ( )k k

y t T D



 ,there	exist	  1k k

x D



 such	that k ky Tx .	Obviously,	0 ( )kx t R  and	

0 ( )kx t R  	for	 [0,1]t .	Then	for	any	 k ,	by	Lemma	2	and	formula	(3)	we	have ( ) ( )( )k ky t Tx t .	
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which	implies	that	  1k k
y




is	uniformly	bounded.	Similarly,	for	any	 k ,	we	have	
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which	 shows	 that	   1k k
y




 is	 also	 uniformly	 bounded.	 This	 indicates	 that	   1k k

y



is	

equicontinuous.	 It	 follows	 from	 Arzela‐Ascoli	 theorem	 that	   1k k
y




has	 a	 convergent	

subsequence	in	 [0,1]C .	Without	loss	of	generality,	we	may	assume	that	converges	in	 [0,1]C .On	

the	other	hand,	by	the	uniform	continuity	of	
( , )G t s

t




,	we	know	that	for	any	 0  ,	there	exists	

0  	such	that	for	any	  1 2, 0,1t t  with	 1 2t t   ,	we	have	
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Then	for	any  1 2, , 0,1k t t  with	 1 2t t   ,	we	have	
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G t s G t s
a s f s x s x s ds
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which	implies	that		  1k k
y




 is	equicontinuous.	Again,	by	Arzela‐Ascoli	theorem,	we	know	that	

  1k k
y




 	has	a	convergent	subsequence	in	 [0,1]C .		

Therefore,	  1k k
y




	has	a	convergent	subsequence	in	 1[0,1]C .	Thus,	we	have	shown	that	T 	is	a	

compact	operator.	Next,	we	prove	that	 0 0:[ , ]T v w K 	is	continuous.	

Suppose	 that	 0 0, [ , ]mu u v w and	 0( )mu u m   .	Then	 for	any	m 	and	 [0,1]t ,	 in	view	of	

Lemma	2	and	formula	(3),	we	have	
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0
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( , ) ( , ) ( ) ( ) ( , ( ), ( ))

1 1m m
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And	
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 
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By	applying	Lebesgue	Dominated	Convergence	theorem,	we	get	that	
	

1 1

0 0
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1m m mm m
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1 1

0 0
( , ) ( , ) ( ) ( ) ( , ( ), ( ))

1

t
G t s G s g d a s f s u s u s ds  


     

  	

( )( ), [0,1]Tu t t  	

And	
	

1 1

0 0

( , ) 1
lim( ) ( ) lim ( , ) ( ) ( ) ( , ( ), ( ))

1m m mm m

G t s
Tu t G s g d a s f s u s u s ds

t
  

 
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1 1

0 0

( , ) 1
( , ) ( ) ( ) ( , ( ), ( ))

1

G t s
G s g d a s f s u s u s ds

t
  


      

  	

( ) ( ), [0,1]Tu t t  	

	
which	 indicates	 that	 0 0:[ , ]T v w K is	 continuous.	 Therefore,	 0 0:[ , ]T v w K 	is	 completely	
continuous.	
Step	2.	We	assert	that	T 	is	monotone	increasing	on 0 0[ , ]v w .	

Suppose	that	 0 0, [ , ]u v v w 	and	u v .	Then0 ( ) ( )u t v t R   and	0 ( ) ( )u t v t R    ,	for	 [0,1]t .	
By	formula	(3),	we	have	
	

1 1

0 0
( )( ) ( , ) ( , ) ( ) ( ) ( , ( ), ( ))

1

t
Tu t G t s G s g d a s f s u s u s ds  


     

  	

1 1

0 0
( , ) ( , ) ( ) ( ) ( , ( ), ( ))

1

t
G t s G s g d a s f s v s v s ds  


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  	

( )( ), [0,1]Tv t t  	

	
And	
	

1 1

0 0

( , ) 1
( ) ( ) ( , ) ( ) ( ) ( , ( ), ( ))

1

G t s
Tu t G s g d a s f s u s u s ds

t
  


      

  	

1 1

0 0

( , ) 1
( , ) ( ) ( ) ( , ( ), ( ))

1

G t s
G s g d a s f s v s v s ds

t
  


      

  	

( ) ( ), [0,1]Tv t t  	

	
which	shows	that	Tu Tv .	
Step	3.	We	prove	that	 0v 	is	a	lower	solution	of	T .	

For	any	 [0,1]t ,	we	know	that	

	

								
1 1

0 00 0
( )( ) ( , ) ( , ) ( ) ( ) ( ,0,0) 0 ( )

1

t
Tv t G t s G s g d a s f s ds v t  


 

     
  	

	
and		
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1 1

0 00 0

( , ) 1
( ) ( ) ( , ) ( ) ( ) ( ,0,0) 0 ( )

1

G t s
Tv t G s g d a s f s ds v t

t
  


        

  	

	
which	implies	that 0 0v Tv .	

Step	4.	We	show	that	 0w 	is	an	upper	solution	of	T .	

It	follows	from	Lemma	2	and	formula	(3)	that	
	

1 1

0 0 00 0
( )( ) ( , ) ( , ) ( ) ( ) ( , ( ), ( ))

1

t
Tw t G t s G s g d a s f s w s w s ds  


     

  	

1

0
(1 ) ( )

1

Rt
s a s ds




 
  	

0 ( ), [0,1]w t t  	

	
And	
	

1 1

0 0 00 0

( , ) 1
( ) ( ) ( , ) ( ) ( ) ( , ( ), ( ))

1

G t s
Tw t G s g d a s f s w s w s ds

t
  


      

  	

1

0
(1 ) ( )

1

R
s a s ds




 
  	

0 ( ), [0,1]w t t  	

which	indicates	that	 0 0Tw w .	

Step	5.	We	prove	 that	 the	BVP	(P)	has	monotone	positive	solutions.	 In	 fact,	 if	we	construct	
sequences	  0n n

v



	and	  0n n

w



	as	follows:	

	

1n nv Tv  and 1n nw Tw  , 1, 2,3 ,n   	

	
then	it	follows	from	Theorem	1	that	
	

0 1 1 0              n nv v v w w w          ,	

  0n n
v




and	  0n n

w



∞	

	

converge	 to,	 respectively,	 v 	and	  0 0,w v w ,	 which	 are	 monotone	 solutions	 of	 the	 BVP(P).	

Moreover,	for	any	 (0,1]t ,	by	Lemmas	2,	we	know	that	
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1 1

0 0 0
( )( ) ( , ) ( , ) ( ) ( ) ( ,0,0)

1

t
Tv t G t s G s g d a s f s ds  


 

   
  	

1

0
( , ) ( ) ( ,0,0)G t s a s f s ds  	

2 1

0
( ) (1 ) ( ) ( ,0,0)

2

t
t s a s f s ds   	

>0.	
	

So,	

00 ( )( ) ( )( ) ( ) ( ), (0,1]Tv t Tv t v t w t t     ,	

	
which	shows	that	v 	and	w 	are	positive	solutions	of	the	BVP	(P).	
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