Growth Evaluation of Technology-based Small and Medium-sized Enterprises based on Catastrophe Series Method

Wu Zhao, Ting Xiao^{*} and Qing Cui

School of Economics and Management, Xidian University, Xi'an Shaanxi 710071, China

* VikeyShaw@outlook.com

Abstract

Technology-based SMEs are one of the important groups to promote China's economic development. However, due to the limited scale of technology-based SMEs and the high degree of uncertainty in corporate innovation activities, the market environment of enterprises is changing rapidly. The growth evaluation of technology-based small and medium-sized enterprises can not only enable enterprises to understand the problems in their development process, but also provide effective data support for the future development strategy of the enterprise. Therefore, this article selects 10 listed technology-based SMEs in the information technology industry in Shaanxi Province as the analysis and research object, adopts the catastrophe series method, selects a scientific and reasonable comprehensive index to establish an evaluation model, and carries out the growth of the technology-based SMEs in Shaanxi Province. the study. The evaluation results are highly consistent with the actual situation of the enterprise, and can effectively reflect the growth of technology-based SMEs in Shaanxi Province. The research not only provides a reference for the technology-based SMEs to make adjustments in the course of their development, but also provides a reference for the government's policy-supporting technology-based SMEs.

Keywords

technology-based SMEs, catastrophe series method, growth evaluation.

1. Introduction

There are a large number of high-tech small and medium-sized enterprises in China, all of which are extremely dynamic. It is one of the important components of China's promotion of scientific and technological progress and is a small unit of regional economic development. Its growth determines the growth of the regional economy. Especially in places where there are many technology-based SMEs in Shaanxi Province, however, their insufficient operating funds, single financing channels, low risk resistance, and poor corporate structure stability make it difficult for technology-based SMEs to face changes in the external environment. Make effective responses in a timely manner, making the growth of technology-based SMEs full of dangers and hardships.

Enterprise growth refers to the development potential and trends possessed by an enterprise. It is a prediction of the company's future development capabilities, and it can provide an allround dynamic prediction of the enterprise, which can provide effective decision-making basis for enterprise executives. The evaluation of the growth of technology-based SMEs can not only clearly understand the development status of technology-based SMEs and their shortcomings in growth, so as to provide targeted strategies, but also to study how to improve the capabilities of enterprises and optimize the structure of enterprises. Provide theoretical and data support to improve the environment for corporate growth. Many scholars in China have studied the growth evaluation of technology-based small and medium-sized enterprises, but most studies have combined qualitative indicators with quantitative indicators to establish a growth evaluation index system and use regional data for comparison. However, regional data has Certain limitations do not suffice to explain the growth issues of enterprises. This article will use regional data to compare with national data, and compare and analyze selected samples, providing more data and information support for comparative analysis of samples.

2. Literature References

2.1. Research on Evaluation Index System of Enterprise Growth

Kimberly Frank selected 6164 observation samples from 1981 to 1995 to study the relationship between the growth of the company and the correlation of the value of accounting information. The results show that the growth of the company accurately determines the accounting information and stock price There is a potential impact, and the relationship between corporate growth and accounting information has a negative correlation. Compared with the accounting data of low-growth companies, the accounting data of highgrowth companies has lower value [1]. Therefore, accounting information can be used as one of the indicators of enterprise evaluation, but because the degree of value information that companies with different degrees can extract is different, if accounting information is used as a single evaluation index, it has certain limitations. D.I.Storey divides the factors of corporate growth into three aspects: the quality of managers, the intrinsic quality of SMEs and the strategic category of business development [2]. BCGhosh et al. Conducted a factor analysis on the key factors of the company's capabilities and success by studying 66 companies in Singapore's "top 50" in 1995 and 1996. The results of the study revealed five main points of corporate success The company has the ability to accurately position the market and segment the market, and efficient management, including a strong management organization and management execution and a visionary and ambition leadership team, able to obtain extensive support and sustainable development. Resources, government support, and appropriate strategic means. Although qualitative indicators are forward-looking indicators, they can make a certain prediction of the future development of the company, but the lack of an evaluation system of quantitative indicators greatly reduces the degree of conviction, so some researchers are more inclined to use qualitative indicators with financial indicators. Combined composite indicator system [3]. For the small and medium-sized technology-based enterprises, Mca et al. Divided the twenty-seven evaluation criteria into six categories, which are the quality of entrepreneurs, the experience of entrepreneurs, special points of products and services, market characteristics, financial characteristics, and enterprises. Teamwork [4].

At present, China's comprehensive enterprise evaluation index system is divided into four categories, the financial evaluation index system and economic benefit evaluation index system issued by the Ministry of Finance, the comprehensive evaluation index system announced by the State Economic and Trade Commission and the National Bureau of Statistics, and the State-owned Assets Management Bureau. The prescribed index system for capital appreciation and preservation. In 2000, the research group of the former Small and Medium Enterprise Department of the State Economic and Trade Commission put forward a relatively complete and quantitative evaluation index system, including development status, profitability level, economic efficiency, and solvency. However, Zhao Zhongwei and others believe that technology-based enterprises should evaluate the growth of the company from five dimensions of the perspective of dynamic capabilities. These five dimensions are environmental insight, change and innovation, organizational flexibility, organizational learning, and resources. Integration capabilities [5]. Wang Yuzheng and others selected sixteen quantitative and one qualitative indicators to build a growth evaluation system from

seven aspects: profitability, debt repayment ability, employee quality, research and development ability, growth ability, business strength, etc., and policy support. The method of combining statistical method, analytic hierarchy process and expert consultation method to evaluate the growth of Shanghai Songjiang Science and Technology "Little Giant" [6]. Wu Dan believes that we should comprehensively evaluate the growth of China's high-tech enterprises from four aspects: technological innovation capabilities, economic operation capabilities, organizational management capabilities, and value creation capabilities [7]. Wang Juying and others established a growth index system suitable for science and technology SMEs from three perspectives of resources, strategy, and capabilities, and used ANP analysis to evaluate the growth of science and technology SMEs in Qingdao [8]. Sui Bo et al. Used Monte Carlo simulation to establish an enterprise growth system model to determine that hardware, scientific management systems, knowledge distribution trends, the soundness of financing mechanisms, and resource conditions have a decisive impact on enterprises [9].

Domestic and foreign research results on corporate growth evaluation index systems are very rich, and the industries involved are also diverse. However, there is currently a commonly used growth evaluation index system, and it is specifically targeted at the growth evaluation of technology-based SMEs. The indicator system is also not perfect. For the specific enterprise type of science and technology SMEs, comprehensive evaluation and analysis of various indicators should be used in accordance with their characteristics, so as to provide scientific and effective strategic decision support for science and technology SMEs.

2.2. **Research on Evaluation Method of Enterprise Growth**

There are various analysis methods for growth evaluation at home and abroad. Jimme. A. Keizer and others used regression methods to analyze small and medium-sized enterprises in the Dutch mechanical and electrical industry, and found that the connection with the technology research center, the government's different policy on innovation, and higher R & D investment have a significant impact on innovation [10]. M. Kakati uses a cluster analysis method] After researching the 38 evaluation criteria adopted by venture investors with high and low-tech experience in success and failure, it is found that entrepreneurial qualities, resource capabilities, and comprehensive competition Strategy is a key factor for a company's vitality and success [11]. Yin Xianan and others proposed the use of VIKOR multi-attribute decision-making method to evaluate and analyze the growth of high-tech enterprises from the perspectives of financial control, innovation ability and risk control [12]. Chen Xiaohong and others used the catastrophe series method to analyze the small and medium-sized listed companies in 2002 from the complete index system composed of five aspects: growth ability, profitability, capital operation ability, market expectations, and enterprise size [13]. Mu Jing et al. Put forward the principal component analysis method, using the three indicators of growth rate, profitability and operating capability as an index system for the evaluation of corporate growth, and analyzed the growth of 18 small and medium-sized enterprises [14]. Chen Xiaohong et al. Based on the analysis method combining gray correlation method and mutation series method, conducted a validity test on small and medium boss companies in 2003 [15]. Zeng Fanfu and others used a factor analysis method to evaluate the growth of our innovative enterprises from five aspects, including the strength of innovation attempts, production and sales capabilities, capital operation capabilities, scientific research innovation and achievement transformation capabilities, and risk resistance capabilities.

Although the current growth evaluation methods are very rich, there is still no evaluation method that adapts to any environment and conditions. When selecting an evaluation method, it is necessary to combine the selected evaluation index system with the characteristics of the selected enterprise, and choose different evaluation methods according to the specific situation.

3. Research Design

3.1. Sample Selection and Data Source

This article studies the growth of technology-based SMEs in Shaanxi Province. Due to the large number of technology-based enterprises, it is biased to compare technology-based enterprises in different industries according to the same evaluation index and model. Therefore, this article selects the information technology industry. A typical science and technology industry is selected as a sample category. At the same time, considering the difficulty of obtaining research data, this article selects the information technology small and medium-sized enterprises disclosed by Shaanxi Provincial Science and Technology Department and the list of listed companies in Shaanxi Province published by the China Securities Regulatory Commission. The 10 listed technology-based SMEs were used as analysis and research objects, and 10 technology-based SMEs from all over the country were selected from the small and medium-sized board information technology industry to calculate the national average level of technology-based SMEs. The data involved in the empirical analysis in this article are basically directly available, mainly from the annual financial reports of listed companies disclosed on the Juchao Advisory Network by the national SME share transfer system.

3.2. Establishment of the Evaluation Index System for the Growth of Technology-based SMEs

Enterprise growth evaluation is an evaluation of the company's future development capabilities. The fundamental factor affecting this ability should be the current operating performance of the company and the relationship between the company and the industry market. Therefore, it is necessary to establish a comprehensive evaluation system. of. In establishing a comprehensive evaluation index system, issues of comparability, comprehensiveness, authenticity, and objectivity must be considered.

In order to establish a comprehensive, objective, and scientific evaluation index system, taking into account that the growth of an enterprise is a continuous process, if you want to comprehensively evaluate the growth of an enterprise, you cannot judge the growth of an enterprise from only one point in time. It is more reasonable to consider the combination of the receivable turnover rate and the operating cash flow per share as its evaluation index. This paper refers to Lei Yong 's two-dimensional judgment model [17]. Dimension has established a comprehensive index evaluation system. In terms of time, the growth rate and quality of the company over a period of time should be considered as much as possible, and space should correctly reflect the market expectations of the industry in which the company is located and the location of the company in the industry status.

Net profit reflects the income of the company, and its growth rate is a direct indication of the company's operating conditions, and reflects the expansion speed of the company to maximize value. But it is not enough to just use the growth rate of net profit as an indicator to analyze the growth and development of enterprises. Operating income, as a company's main business income, is not only the main source of corporate profits, but also represents the market share of the enterprise. If its growth rate gradually increases, it not only indicates that corporate profits are increasing, but also that the market share of the enterprise is increasing year by year, indicating that the enterprise may be in a period of rapid growth and growth. On the contrary, the enterprise may be in a state of slow growth or even gradual decline. The growth rate of operating income can be used as one of the indicators to measure the development speed of the company's main business and the expansion speed of the company. In addition, corporate assets are an important carrier for an enterprise to obtain income, and at the same time it is a guarantee for the company to repay its liabilities. For companies with

better development and higher growth, the total assets are generally steadily increasing. The growth rate reflects the speed of the expansion of the asset management scale of the enterprise in a certain period. Therefore, the total asset growth rate can be used as an indicator of the growth rate of the enterprise. one.

The growth of an enterprise is a process. The quality of enterprise growth should be guaranteed while pursuing the growth rate. Closely related to the quality of enterprise development should be the company's cash flow. A company with strong cash flow indicates to a large extent that its operating income is stable, its products are highly competitive in the industry, its credit is high, and it has a considerable future market development. Prospects. For listed companies, operating cash flow per share not only directly reflects the cash flow earned by the company per share, but also reflects the ability of the company to distribute the highest cash dividends to shareholders, which is one of the important indicators of the quality of corporate development. At present, companies often sell by credit sales, and a large amount of accounts receivable will be generated. The speed of collection of accounts receivable greatly affects the company's cash flow. The slower the turnover rate of accounts receivable, the slower the working capital of the enterprise will stagnate on the accounts receivable, which affects the normal capital turnover [18]. On the surface, the enterprise is rich in assets and has a high growth potential, but the actual The company has less cash flow and insufficient driving force for growth. Therefore, the account receivable turnover rate is used as one of the criteria for measuring the quality of corporate growth.

Because this article is based on technology-based SMEs, Tang Yuejun and others have proved that the size of an enterprise has a certain effect on the growth of the enterprise [19]. When considering the size of an enterprise, we generally choose the total assets of the enterprise and the number of employees as indicators. The total assets of the enterprise reflects the assets that the enterprise can use for a period of time. The number of employees in the enterprise indirectly reflects the degree of perfection of the corporate structure.

4. Enterprise Growth Evaluation based on Improved Catastrophe Series

Basic Principles 4.1.

The catastrophe series method is a multi-level contradiction decomposition of the evaluation target, and then uses catastrophe theory and fuzzy mathematics to generate catastrophe fuzzy membership functions, and then uses the normalization formula to perform comprehensive quantification operations. Finally, it is normalized to a parameter. A comprehensive evaluation method that gives out the total membership function, so as to sort and analyze the evaluation targets [20].

The most important idea in the decision theory of the catastrophe series method is that each attribute in a multi-attribute decision system is a state variable determined by the behavior change of its corresponding underlying attribute. Therefore, when using the catastrophe series method, the most important thing is Scientific decomposition of the target. According to the purpose of evaluation, the evaluation index is divided into primary and secondary levels, and a hierarchical index evaluation system is gradually constructed.

Types of Mutation-level Systems 4.2.

There are currently seven types of mutation systems, namely folding mutation system, cusp mutation system, dovetail mutation system, butterfly mutation system, elliptic umbilical mutation system, hyperbolic umbilical mutation system and parabolic umbilical mutation system, but among them, cusp mutation System, dovetail mutation system, and butterfly mutation system are the three most common types. The corresponding mutation models and their normalization formulas are shown in Table 1.

type	Cusp catastrophe system	Dovetail mutation system	Butterfly mutation system
q potential function	$f(x) = x^4 + ax^2 + bx$	$f(x) = \frac{1}{5}x^5 + \frac{1}{3}ax^3 + \frac{1}{2}bx^2 + cx$	$f(x) = \frac{1}{6}x^{6} + \frac{1}{4}ax^{4} + \frac{1}{3}bx^{3} + \frac{1}{2}cx^{2} + dx$
Normalized formula	$x_a = a^{\frac{1}{2}}, x_b = b^{\frac{1}{3}}$	$x_a = a^{\frac{1}{2}}, x_b = b^{\frac{1}{3}}, x_c = c^{\frac{1}{4}}$	$x_a = a^{\frac{1}{2}}, x_b = b^{\frac{1}{3}}, x_c = c^{\frac{1}{4}}, x_d = d^{\frac{1}{5}}$
lcon	a b	a b c	a b c d

Table 1. Three common mutation types

In a dynamic system, f (x) is the potential function of the abrupt system, x is the independent variable, and a, b, c, and d are the control variables of the state variable. As far as the classification of three common mutation systems is concerned, if an indicator can be decomposed into two sub-indicators, the system is a cusp catastrophe system; if a target can be divided into three sub-indicators, the system is a dovetail mutation. System; if an object can be divided into four sub-indicators, we call the system a butterfly mutation system.

4.3. Standardized Processing

Because the value ranges of the control variables and state variables in the indicator system are not consistent, and some of the original data values are not between 0 and 1, in order to make the value ranges of the state variables and control variables in the indicator system be 0 to 1 In the meantime, according to the principle of "the mutation result of the addition, subtraction, multiplication, and division remains unchanged", simple four arithmetic changes are performed on the original data, and the value range of the data is controlled between 0 and 1. between.

4.4. Comprehensive Evaluation

After processing by the normal formula, the mass state of the control variable is transformed into the mass state represented by the state variable. There are two situations that need to be considered in the comprehensive evaluation. First, if there are no mutually replaceable or complementary relationships between the control variables in the system, then when selecting the value of x as the system, "large out of small" should be used. in principle. If there is a clear complementary or alternate relationship between the control variables in the system, then the average value of the corresponding mutation order of each control variable should be taken as the x value of the system.

5. Empirical Analysis

5.1. Construction of Indicator System

To build an index system, first of all, we must decompose the total index layer by layer for evaluation purposes. When the index can be decomposed to be directly measurable, the decomposition can be stopped at this time. Secondly, when discharging indicators at all levels, they need to be discharged according to the importance of the indicators, that is, for the indicators of the same level, relatively important indicators should be placed first, and relatively less important indicators should be emitted behind.

Based on domestic and foreign research data, this article breaks down the company's growth indicators into four indicators: growth rate(GR) growth quality(GQ), innovation ability(IA), and enterprise size(ES). These four secondary indicators are further decomposed. Main business Revenue growth rate(MBRG), net profit growth rate(NPGR), total asset growth rate(TAGR), Receivables Turnover Ratio(RTR), Per Share Cash Flow From Operations (PSCFFO), R&D expenses(R&DE), R&D intensity(R&DI), Number of technicians (NOT), Technical staff ratio(TSR),Total assets(TA), Number of employees(NOE). Figure picture one.

5.2. Determine the Mutation Type

Combining the classification of the mutation series and the constructed index system, we can find that the growth of technology-based SMEs is a sharp point mutation system; both time and space are sharp point mutation systems; the growth rate corresponds to the dovetail mutation system; the growth quality is sharp. The point mutation system can be deduced by analogy. The market expectation and the scale of the company are both point mutation systems.

Fig. 1 Index system for evaluating the growth of technology-based SMEs

5.3. Indicator Data Processing and Results

Due to the different properties of the lowest level indicators in this indicator system, the dimensions and value ranges are not the same. If the comparison is made directly, the effect of a larger value will be inflated and the effect of a smaller value will be weakened. And according to the data requirements of the catastrophe series method, this paper must first process the data and control all the data in the range of 0 to 1. The original data in this paper are shown in Tables 2, 3 and 4.

					in 2	2017					
Name	MBR G	NPG R	TAG R	RTR	PSCFFC O	R&DE	R&DI	N OT	TSR	ТА	N OE
Flag Electronics	8.53 %	186.7 2%	11.8 3%	2.43	0.26640 3832	8,837,1 00.00	0.05703 3034	11 0	0.25404 157	162,563,4 62.12	43 3
LiDeYa Electronic	30.6 2%	- 21.58 %	17.3 4%	1.57	- 0.15205 9234	3,512,7 27.14	0.04028 4527	45	0.40909 0909	180,948,0 80.72	11 0

Table 2. Raw data of related indexes of science and technology SMEs in Shaanxi Province in 2017

TIRAIN	33.5 2%	28.39 %	7.38 %	1.98	0.55667 2912	6,385,6 14.26	0.06322 5453	77	0.21813 0312	144,224,7 88.26	35 3
CLUbank	29.0 6%	10.33 %	27.7 8%	1.36	0.04790 2073	4,972,3 65.59	0.08053 6639	91	0.55151 5152	127,574,8 69.93	16 5
BoDa software	33.0 7%	11.63 %	62.1 0%	3.7	0.42305 347	3,423,8 48.64	0.07069 0887	13 8	0.62727 2727	78,107,34 1.81	22 0
Bangzheng technolog Y	- 35.3 5%	- 95.65 %	- 8.53 %	0.61	0.16082 1753	6,573,0 11.34	0.08452 8232	61	0.45522 3881	156,107,4 46.30	13 4
MICROSEN SOE	14.9 4%	- 12.36 %	5.99 %	12.4 8	0.30442 909	9,735,8 97.61	0.07496 1114	77	0.21629 2135	188,983,5 27.51	35 6
Day Naturay	44.8 3%	- 80.80 %	13.8 5%	4.65	0.00948 7392	1,469,5 87.31	0.06338 7769	29	0.3625	31,727,10 4.30	80
WeiHeng Naturay	9.13 %	- 232.4 2%	5.00 %	3.83	1.13455 7255	3,186,1 22.09	0.02189 8619	3	0.06521 7391	183,760,7 76.75	46
ZhengCha ng Electronics	2.91 %	17.60 %	- 5.83 %	1.89	0.04266 5043	2,428,6 27.45	0.05586 0459	8	0.15094 3396	64,141,35 5.16	53
Maurer	- 22.1 4%	- 67.51 %	- 2.48 %	1.59	0.10623 3171	8,231,1 24.83	0.20543 7196	44	0.23404 2553	129,693,1 75.86	18 8
Fang YuanMing	- 59.2 5%	- 135.6 7%	- 13.1 4%	0.74	0.16755 3983	2,370,6 45.30	0.14068 6051	77	0.62096 7742	95,859,19 7.08	12 4
ShanKong	1.89 %	57.81 %	9.57 %	1.54 99	- 0.08403 5724	2,769,7 56.90	0.04317 296	13	0.17808 2192	164,586,4 31.57	73
SATPRO M&C	- 7.60 %	- 180.6 5%	- 8.38 %	1.23	- 0.21458 116	7,160,9 64.35	0.09453 1647	95	0.42986 4253	173,046,6 23.40	22 1
XICI Electronic	14.2 6%	16.19 %	5.52 %	3.26	- 0.15193 3229	9,880,8 43.16	0.09440 4223	69	0.24731 1828	130,287,3 05.87	27 9

Senwas	- 60.1 1%	287.1 6%	- 19.8 8%	0.57	- 0.16815 1605	2,767,2 92.23	0.15953 9254	24	0.29268 2927	56,407,71 1.95	82
Reactor Microelect ronics	- 8.07 %	- 40.54 %	6.15 %	2.88 12	- 0.10485 4321	1,088,5 24.05	0.01542 8208	47	0.5875	97,173,45 1.41	80
CMEC	- 5.71 %	- 67.79 %	18.5 1%	0.8	- 0.13817 863	1,347,8 18.64	0.06669 5132	13	0.26	50,580,18 1.92	50

Table 3. Raw data of relevant indicators for technology-based SMEs in Shaanxi Province in2016

Name	MBR G	NPG R	TAGR	RT R	PSCFFC O	R&DE	R&DI	N OT	TSR	ТА	N OE
Flag Electronics	- 0.72 %	0.47 %	0.99 %	2.2 3	0.0674 8459	9,322,2 16.71	0.06529 439	11 2	0.24561 404	145,363,6 43.58	45 6
LiDeYa Electronic	23.0 2%	261.2 1%	- 10.00 %	1.3 2	- 0.0600 349	2,908,0 35.24	0.04356 163	41	0.42268 041	154,203,7 80.82	97
TIRAIN	3.93 %	5.30 %	22.51 %	1.6	0.2916 7453	4,360,3 05.30	0.05764 425	65	0.21812 081	134,311,9 34.75	29 8
CLUbank	51.8 4%	70.98 %	105.6 0%	1.7 8	- 0.3540 03	4,065,2 24.60	0.08497 995	87	0.61702 128	99,840,43 5.96	14 1
BoDa software	44.4 8%	69.03 %	61.29 %	2.9 7	0.1139 0434	1,447,7 93.58	0.03977 709	11 2	0.7	48,104,59 4.47	16 0
Bangzheng technolog y	19.8 9%	38.54 %	20.99 %	1.1 3	- 0.1070 073	7,046,6 40.78	0.05858 83	57	0.43846 154	170,658,1 99.88	13 0
MICROSEN SOE	9.78 %	10.97 %	9.70 %	11. 85	0.3429 5976	8,393,5 75.97	0.07427 853	70	0.20408 163	178,301,1 02.87	34 3
Day Naturay	43.9 9%	281.4 0%	25.37 %	5.6 9	- 0.0257 103	1,036,2 90.67	0.06473 742	31	0.3875	27,866,40 1.01	80
WeiHeng Naturay	- 7.68 %	63.95 %	27.62 %	4.6 7	- 0.0110 934	5,363,6 01.64	0.04022 906	3	0.06521 739	175,011,1 16.90	46
ZhengCha ng Electronics	31.3 7%	- 10.24 %	4.90 %	2.0 2	0.0279 0756	2,272,7 65.43	0.05379 643	6	0.125	68,114,73 1.68	48

Maurer	- 7.78 %	- 1.18 %	14.13 %	2.3 5	0.4582 536	7,776,1 15.69	0.15111 8	75	0.56818 182	132,989,3 94.56	13 2
Fang YuanMing	- 17.7 7%	- 26.92 %	6.19 %	1.8 7	- 0.2511 08	1,485,8 46.41	0.03592 953	77	0.60156 25	110,364,5 57.06	12 8
ShanKong	- 10.3 8%	- 18.37 %	32.59 %	1.5 7	- 0.1041 019	402,042 .11	0.00638 487	13	0.17333 333	150,213,7 83.47	75
SATPRO M&C	11.8 3%	- 1.23 %	65.77 %	1.5 9	- 0.2421 948	2,684,4 96.62	0.03274 411	63	0.39375	188,869,4 06.06	16 0
XICI Electronic	- 60.1 1%	287.1 6%	- 19.88 %	0.5 7	- 0.1681 516	2,767,2 92.23	0.15953 925	24	0.29268 293	56,407,71 1.95	82
Senwas	54.1 0%	-47%	- 11.44 %	1.1 4	0.0699 2008	2,990,5 39.24	0.15953 9254	24	0.29268 2927	56,407,71 1.95	82
Reactor Microelect ronics	44.4 1%	- 10.70 %	13.71 %	3.1 6	- 3.7310 145	1,699,1 34.73	0.02214 043	47	0.39830 508	91,546,63 7.66	11 8
CMEC	- 17.7 7%	- 26.92 %	6.19 %	1.8 7	- 0.2215 08	1,485,8 46.41	0.03592 953	77	0.60156 25	110,364,5 57.06	12 8
Table 4. I	Raw da	ta of re	levanti	ndexe	s of tech	nology-ba	sed SMEs	in Sh	naanxi Pro	ovince in 20)15
Name	MBR G	NPG R	TAGR	RTR	PSCFF O	€C R&DE	E R&DI	N OT	TSR	ТА	N OE
Flag Electronics	- 20.1 6%	- 63.7 1%	- 2.69 %	2.07	0.089 4185	62 6,944, 5 80.87	1 0.0482 7 8737	13 1	0.27813 1635	142,485,1 74.00	47 1
LiDeYa Electronic	- 18.4 0%	- 59.7 7%	22.8 1%	1.19	0.174 1938	69 3,254, 3 10.44	3 0.0599 I 7115	40	0.43956 044	171,344,3 86.32	91
TIRAIN											
	10.2 2%	10.6 0%	35.9 6%	1.94	0.0119 5827	91 4,613, 7 16.14	7 0.0633 9111	50	0.20161 2903	109,635,4 58.43	24 8
CLUbank	10.2 2% 50.4 8%	10.6 0% 57.1 3%	35.9 6% 92.0 0%	1.94 2.51	0.0119 5827 0.2349 0253	91 4,613, 7 16.14 93 2,153, 3 45.96	7 0.0633 9111 3 0.0683 5 4906	50 69	0.20161 2903 0.59482 7586	109,635,4 58.43 48,560,09 0.04	24 8 11 6

Scientific Journal of Economics and Management Research ISSN: 2688-9323

Bangzhen g technolog y	66.0 4%	413. 38%	73.4 7%	1.65	- 0.23934 4241	2,272,7 93.42	0.0226 5537	48	0.46153 8462	141,049,7 58.93	10 4
MICROSE NSOE	0.76 %	3.06 %	31.4 3%	14.05	0.26298 1381	6,073,9 69.21	0.0590 0663	56	0.18122 9773	162,533,7 84.12	30 9
Day Naturay	18.8 0%	- 386. 66%	223. 46%	28.63	- 0.27061 3825	1,442,4 15.10	0.1297 4802	29	0.47540 9836	22,226,81 8.51	61
WeiHeng Naturay	47.4 8%	155. 25%	30.5 6%	10.56	- 0.10997 1143	5,921,2 01.98	0.041	3	0.06521 7391	137,138,0 00.59	46
ZhengCha ng Electronics	7.26 %	154. 83%	3.88 %	1.95	- 0.10644 5693	964,901 .95	0.0300 0378	6	0.14634 1463	64,934,08 9.02	41
Maurer	- 1.14 %	7.30 %	0.37 %	3.29	0.06620 8581	5,097,6 19.32	0.0913 5303	31	0.19018 4049	116,523,6 58.89	16 3
Fang YuanMing	281. 81%	676. 39%	172. 50%	3.13	- 0.12357 2561	1,019,5 14.39	0.0135 7104	82	0.61194 0299	126,778,4 85.12	13 4
ShanKong	23.1 9%	85.1 8%	46.7 7%	2.03	0.17981 1191	60,630. 95	0.0008 6291	11	0.14473 6842	113,288,6 93.22	76
SATPRO M&C	36.3 4%	409. 06%	170. 48%	3.03	- 1.06605 1042	5,533,5 07.76	0.0754 7724	60	0.43478 2609	113,935,2 47.23	13 8
XICI Electronic	- 11.1 2%	- 52.8 8%	13.1 0%	2.78	0.35814 7162	6,789,5 24.67	0.0824 8422	83	0.32170 5426	121,613,2 80.76	25 8
Senwas	- 54.1 5%	- 282. 10%	- 11.0 4%	- 0.01682 8512	3,644,4 58.24	3,644,4 58.24	0.1291 498	21	0.25	79,496,52 9.56	84
Reactor Microelect ronics	89.4 8%	100. 47%	79.4 1%	- 0.23641 191	876,642 .38	876,642 .38	0.0164 9571	42	0.6	80,509,20 6.25	70
CMEC	60.7 1%	130. 77%	113. 90%	- 0.38233 028	1,215,3 69.59	1,215,3 69.59	0.0615 1257	12	0.24	41,869,88 7.84	50

The standardized formula used is:

$$y_{ij} = \frac{x_{ij} - \min_{1 \le j \le n} x_{ij}}{\max_{1 \le j \le n} x_{ij} - \min_{1 \le j \le n} x_{ij}} \quad (1 \le i \le n)$$

The standardized data are shown in Table 4 and Table 5.

Table 5. Standardization data of related indicators of 2017 technology-based SMEs in Shaanxi
Province

Name	MBRG	NPGR	TAGR	RTR	PSCFF CO	R&DE	R&DI	NOT	TSR	T A	NOE
Flag Electroni CS	0.6540 8805	0.8066 9002	0.3868 0166	0.1561 7128	0.3565 1271	0.8812 8921	0.2189 6241	0.7925 9259	0.3359 5301	0. 83	1
LiDeYa Electroni c	0.8645 8929	0.4057 8929	0.4540 1317	0.0839 6306	0.0463 4211	0.2757 1828	0.1308 1654	0.3111 1111	0.6118 1435	0. 95	0.1653 7468
TIRAIN	0.8922 2413	0.5019 6312	0.3325 2013	0.1183 8791	0.5716 6416	0.6024 6792	0.2515 5255	0.5481 4815	0.2720 6026	0. 72	0.7932 8165
CLUbank	0.8497 2365	0.4672 0428	0.5813 6131	0.0663 3081	0.1945 5619	0.4417 3119	0.3426 5974	0.6518 5185	0.8652 1331	0. 61	0.3074 9354
BoDa software	0.8879 3596	0.4697 063	1	0.2628 0437	0.4726 2358	0.2656 0963	0.2908 4245	1	1	0. 29	0.4496 124
Bangzhen g technolo gy	0.2359 4435	0.2632 3184	0.1384 484	0.0033 5852	0.2782 5382	0.6237 8165	0.3636 6714	0.4296 2963	0.6938 934	0. 79	0.2273 9018
MICROSE NSOE	0.7151 7057	0.4235 3439	0.3155 6477	1	0.3846 9756	0.9835 1453	0.3133 1626	0.5481 4815	0.2687 898	1. 00	0.8010 3359
Day Naturay	1	0.2918 1262	0.4114 4182	0.3425 6927	0.1660 827	0.0433 4047	0.2524 068	0.1925 9259	0.5289 2053	0. 00	0.0878 553
WeiHeng Naturay	0.6598 056	0	0.3034 8866	0.2737 1956	1	0.2385 7165	0.0340 5318	0	0	0. 97	0
ZhengCh ang Electroni cs	0.6005 3364	0.4811 9635	0.1713 8326	0.1108 3123	0.1906 7443	0.1524 1751	0.2127 9126	0.0370 3704	0.1525 2236	0. 21	0.0180 8786

Maurer	0.3618 2581	0.3173 9097	0.2122 4689	0.0856 4232	0.2377 9201	0.8123 6824	1	0.3037 037	0.3003 7107	0. 62	0.3669 2506
Fang YuanMin g	0.0081 9516	0.1862 0809	0.0822 1517	0.0142 7372	0.2832 4384	0.1458 2287	0.6592 2062	0.5481 4815	0.9887 8227	0. 41	0.2015 5039
ShanKon g	0.5908 138	0.5585 8578	0.3592 3396	0.0822 754	0.0967 6208	0.1912 1609	0.1460 1811	0.0740 7407	0.2008 0728	0. 84	0.0697 6744
SATPRO M&C	0.5003 8117	0.0996 3817	0.1402 7812	0.0554 1562	0	0.6906 5286	0.4163 142	0.6814 8148	0.6487 7395	0. 90	0.4521 9638
XICI Electroni c	0.7086 9068	0.4784 8262	0.3098 3167	0.2258 6062	0.0464 3551	1	0.4156 4357	0.4888 8889	0.3239 7955	0. 63	0.6020 6718
Senwas	0	1	0	0	0.0344 1423	0.1909 3577	0.7584 4331	0.1555 5556	0.4047 031	0. 16	0.0930 2326
Reactor Microele ctronics	0.4959 0242	0.3692 9828	0.3175 1647	0.1940 5542	0.0813 3105	0	0	0.3259 2593	0.9292 3699	0. 42	0.0878 553
CMEC	0.5183 9146	0.3168 5207	0.4682 8495	0.0193 115	0.0566 3061	0.0294 9103	0.2698 1315	0.0740 7407	0.3465 5415	0. 12	0.0103 3592

Table 6. Standardization data of relevant indicators for 2016 technology-based SMEs inShaanxi Province

Name	MBRG	NPGR	TAGR	RTR	PSCFF CO	R&DE	R&DI	NOT	TSR	T A	NOE
Flag Electroni Cs	0.5200 07	0.1420 577	0.1663 2133	0.1471 6312	0.9067 2141	1	0.3846 4144	1	0.2841 8649	0. 73	1
LiDeYa Electroni c	0.7278 6971	0.9223 4259	0.0787 3765	0.0664 8936	0.8762 8185	0.2809 3543	0.2427 4045	0.3486 2385	0.5631 2668	0. 78	0.1243 9024

TIRAIN	0.5607 2148	0.1565 1185	0.3378 2276	0.0913 1206	0.9602 3671	0.4437 4279	0.3346 9089	0.5688 0734	0.2408 7524	0. 66	0.6146 3415
CLUbank	0.9802 1189	0.3530 644	1	0.1072 695	0.8061 1013	0.4106 6264	0.5131 7552	0.7706 422	0.8692 8009	0. 45	0.2317 0732
BoDa software	0.9157 692	0.3472 2887	0.6468 76	0.2127 6596	0.9178 0205	0.1172 3442	0.2180 2978	1	1	0. 13	0.2780 4878
Bangzhen g technolo gy	0.7004 6406	0.2559 8516	0.3257 0928	0.0496 4539	0.8650 693	0.7448 9558	0.3408 5494	0.4954 1284	0.5879 8736	0. 89	0.2048 7805
MICROSE NSOE	0.6119 4291	0.1734 7977	0.2357 3478	1	0.9724 7876	0.8958 9433	0.4433 0212	0.6146 789	0.2187 5874	0. 93	0.7243 9024
Day Naturay	0.9114 7885	0.9827 6275	0.3606 1524	0.4539 0071	0.8844 7531	0.0711 0271	0.3810 048	0.2568 8073	0.5077 0548	0. 00	0.0829 2683
WeiHeng Naturay	0.4590 6663	0.3320 2657	0.3785 4638	0.3634 7518	0.8879 6444	0.5562 1776	0.2209 8089	0	0	0. 91	0
WeiHeng Naturay ZhengCh ang Electroni cs	0.4590 6663 0.8009 8065	0.3320 2657 0.1100 0718	0.3785 4638 0.1974 8167	0.3634 7518 0.1285 461	0.8879 6444 0.8972 7417	0.5562 1776 0.2097 1824	0.2209 8089 0.3095 6713	0 0.0275 2294	0 0.0941 7808	0. 91 0. 25	0 0.0048 7805
WeiHeng Naturay ZhengCh ang Electroni cs Maurer	0.4590 6663 0.8009 8065 0.4581 9105	0.3320 2657 0.1100 0718 0.1371 1994	0.3785 4638 0.1974 8167 0.2710 3921	0.3634 7518 0.1285 461 0.1578 0142	0.8879 6444 0.8972 7417 1	0.5562 1776 0.2097 1824 0.8266 7368	0.2209 8089 0.3095 6713 0.9450 146	0 0.0275 2294 0.6605 5046	0 0.0941 7808 0.7923 4122	0. 91 0. 25 0. 65	0 0.0048 7805 0.2097 561
WeiHeng Naturay ZhengCh ang Electroni cs Maurer Fang YuanMin g	0.4590 6663 0.8009 8065 0.4581 9105 0.3707 206	0.3320 2657 0.1100 0718 0.1371 1994 0.0600 9097	0.3785 4638 0.1974 8167 0.2710 3921 0.2077 6219	0.3634 7518 0.1285 461 0.1578 0142 0.1152 4823	0.8879 6444 0.8972 7417 1 0.8377 374	0.5562 1776 0.2097 1824 0.8266 7368 0.1215 0035	0.2209 8089 0.3095 6713 0.9450 146 0.1929 0769	0 0.0275 2294 0.6605 5046 0.6788 9908	0 0.0941 7808 0.7923 4122 0.8449 2723	0. 91 0. 25 0. 65 0. 51	0 0.0048 7805 0.2097 561 0.2
WeiHeng Naturay ZhengCh ang Electroni cs Maurer Fang YuanMin g ShanKon g	0.4590 6663 0.8009 8065 0.4581 9105 0.3707 206 0.4354 2597	0.3320 2657 0.1100 0718 0.1371 1994 0.0600 9097 0.0856 7752	0.3785 4638 0.1974 8167 0.2710 3921 0.2077 6219 0.4181 5429	0.3634 7518 0.1285 461 0.1578 0142 0.1152 4823 0.0886 5248	0.8879 6444 0.8972 7417 1 0.8377 374 0.8657 6283	0.5562 1776 0.2097 1824 0.8266 7368 0.1215 0035	0.2209 8089 0.3095 6713 0.9450 146 0.1929 0769 0	0 0.0275 2294 0.6605 5046 0.6788 9908 0.0917 4312	0 0.0941 7808 0.7923 4122 0.8449 2723 0.1703 1963	0. 91 0. 25 0. 65 0. 51 0. 76	0 0.0048 7805 0.2097 561 0.2 0.2 0.0707 3171

XICI Electroni c	0	1	0	0	0.8504 7383	0.2651 5738	1	0.1926 6055	0.3583 3612	0. 18	0.0878 0488
Senwas	1	0	0.0672 6172	0.0505 3191	0.9073 0278	0.2901 8458	0.4073 4794	0.1926 6055	0.3318 3751	0. 26	0.1
Reactor Microele ctronics	0.9151 5629	0.1086 306	0.2676 9206	0.2296 0993	0	0.1454 1112	0.1028 7374	0.4036 6972	0.5247 2719	0. 40	0.1756 0976
CMEC	0.3707 206	0.0600 9097	0.2077 6219	0.1152 4823	0.8377 374	0.1215 0035	0.1929 0769	0.6788 9908	0.8449 2723	0. 51	0.2

Table 7. Standardization data of relevant indicators for technology-based SMEs in ShaanxiProvince in 2015

Name	MBRG	NPGR	TAGR	RTR	PSCFF CO	R&DE	R&DI	NOT	TSR	T A	NOE
Flag Electroni cs	0.1011 7276	0.3037 9568	0.0356 0768	0.0524 4381	0.4634 7454	1	0.3679 5918	1	0.3693 5469	0. 81	1
LiDeYa Electroni c	0.1064 1148	0.3075 02	0.1443 4968	0.0210 4888	0.4975 903	0.4639 5821	0.4586 1191	0.289 0625	0.6493 946	1. 00	0.1162 7907
TIRAIN	0.1916	0.3736	0.2004	0.0478	0.4323	0.6614	0.4851	0.367	0.2366	0.	0.4813
	0019	9832	2644	0592	1021	4435	4683	1875	1321	59	9535
CLUbank	0.3114	0.4174	0.4394	0.0681	0.5217	0.3040	0.5236	0.515	0.9187	0.	0.1744
	3589	686	0299	4128	4841	1683	1479	625	4553	18	186
BoDa	0.2300	0.4117	0.3939	0.1441	0.7137	0.3236	0.6981	0.578	1	0.	0.1837
software	5715	5862	4456	3129	6573	6926	7576	125		05	2093
Bangzhen g technolo gy	0.3577 5092	0.7525 8925	0.3603 838	0.0374 5986	0.3315 4432	0.3213 6942	0.1690 8441	0.351 5625	0.6875 2115	0. 80	0.1465 1163
MICROSE	0.1634	0.3666	0.1811	0.4798	0.5329	0.8735	0.4511	0.414	0.2012	0.	0.6232
	4208	0552	0874	4303	9809	8098	2829	0625	5341	94	5581

Scientific Journal of Economics	and Management Research
ISSN: 2688-9323	

Day Naturay	0.2171 3895	0	1	1	0.3190 039	0.2007 3714	1	0.203 125	0.7115 8463	0. 00	0.0465 1163
WeiHeng Naturay	0.3025 0625	0.5097 6906	0.1773 9872	0.3553 3357	0.3834 2839	0.8513 8789	0.3114 1761	0	0	0. 77	0.0116 2791
ZhengCh ang Electroni cs	0.1827 8962	0.5093 7397	0.0636 2473	0.0481 6268	0.3848 4225	0.1313 6696	0.2260 9958	0.023 4375	0.1407 3063	0. 29	0
Maurer	0.1577 8664	0.3705 9405	0.0486 5672	0.0959 6861	0.4540 839	0.7317 4284	0.7020 9909	0.218 75	0.2167 8691	0. 63	0.2837 2093
Fang YuanMin g	1	1	0.7826 8657	0.0902 6044	0.3779 7365	0.1393 0072	0.0986 0051	0.617 1875	0.9484 3194	0. 70	0.2162 7907
ShanKon g	0.2302 0598	0.4438 5495	0.2465 2452	0.0510 1677	0.4996 4334	0	0	0.062 5	0.1379 47	0. 61	0.0813 9535
SATPRO M&C	0.2693 4754	0.7485 2547	0.7740 7249	0.0866 9283	0	0.7950 6604	0.5789 2124	0.445 3125	0.6411 0622	0. 62	0.2255 814
XICI Electroni c	0.1280 8072	0.3139 8335	0.1029 4243	0.0777 7381	0.5711 6359	0.9775 3249	0.6332 8736	0.625	0.4449 4467	0. 67	0.5046 5116
Senwas	0	0.0983 585	0	0	0.4207 8252	0.5206 3649	0.9953 5847	0.140 625	0.3205 5311	0. 38	0.1
Reactor Microele ctronics	0.4275 2113	0.4582 3809	0.3857 1429	0.0924 01	0.3327 2031	0.1185 4515	0.1212 9255	0.304 6875	0.9277 1842	0. 39	0.0674 4186
CMEC	0.3418 8594	0.4867 4098	0.5327 9318	0.0449 5184	0.2742 0088	0.1677 5336	0.4705 7149	0.070 3125	0.3032 0553	0. 13	0.0209 3023

This article uses 2017 Xi'an Jingqi Electronics Co., Ltd. as an example to illustrate the calculation process of related indicators. The calculation should start from the lowest index, and then calculate each index in order from bottom to top.

The main business income growth rate, net profit growth rate and total asset growth rate three three-level indicators constitute the growth rate. Because the growth rate is a dovetail catastrophe model, then:

$$x_{c_1} = C_1^{\frac{1}{2}} = 0.65408805^{\frac{1}{2}} = 0.8087571$$

$$x_{c_2} = C_2^{\frac{1}{3}} = 0.80669003^{\frac{1}{3}} = 0.93089828$$
$$x_{c_3} = C_3^{\frac{1}{4}} = 0.38680166^{\frac{1}{4}} = 0.7886278$$

Because it is a non-complementary system, according to the principle of non-complementary "big, medium and small", the growth rate B_1 has:

 $x_{B_1} = \min\{x_{c_1}, x_{c_2}, x_{c_3}\} = \min\{0.8087571, 0.93089828, 0.7886278\} = 0.7886278$

As for the quality of indicator growth, it is decomposed into two three-level indicators of accounts receivable turnover rate and operating cash flow per share, which are cusp catastrophe models, then:

$$x_{C_4} = C_4^{\frac{1}{2}} = 0.15617128^{\frac{1}{2}} = 0.39518513$$
$$x_{C_5} = C_5^{\frac{1}{3}} = 0.35651271^{\frac{1}{3}} = 0.70907418$$

Because it is a non-complementary system, according to the principle of non-complementary "big, medium and small", the quality of growth B_2 has:

 $x_{B_1} = \min\{x_{c_5}, x_{c_6}\} = \min\{0.39518513, 0.70907418\} = 0.39518513$

The index technology is decomposed into four three-level indicators of total research investment, research and development investment intensity, number of technical staff, and proportion of technical staff. For the butterfly mutation model, then:

$$x_{C_6} = C_6^{\frac{1}{2}} = 0.88128921^{\frac{1}{2}} = 0.93877005$$
$$x_{C_7} = C_7^{\frac{1}{3}} = 0.21896241^{\frac{1}{3}} = 0.60273053$$
$$x_{C_8} = C_8^{\frac{1}{4}} = 0.79259259^{\frac{1}{4}} = 0.94354475$$
$$x_{C_9} = C_9^{\frac{1}{5}} = 0.33595301^{\frac{1}{5}} = 0.80399937$$

Since it is a complementary system, according to the principle of averaging complementary values, the market expectation B_3 has:

$$x_{B_3} = \frac{x_{C_6} + x_{C_7} + x_{C_8} + x_{C_9}}{4} = \frac{0.93877005 + 0.60273053 + 0.94354475 + 0.80399937}{4}$$

The two three-level indicators of the total assets of the enterprise and the total number of employees of the enterprise constitute the second-level indicator of enterprise size, which is a sharp point mutation model, then:

$$x_{C_{10}} = C_{10}^{\frac{1}{2}} = 0.83^{\frac{1}{2}} = 0.9121369$$
$$x_{C_{11}} = C_{11}^{\frac{1}{3}} = 1^{\frac{1}{3}} = 1$$

Since it is a complementary system, according to the principle of averaging complementary, for the size of the enterprise B_4:

$$x_{B_4} = \frac{x_{C_8} + x_{C_9}}{2} = \frac{0.9121369 + 1}{2} = 0.95606845$$

After the calculation of the lowest-level indicator is completed, the upper-layer indicator is calculated.

The primary indicator time A_1 is decomposed into two secondary indicators of growth rate B_1 and growth quality B_2, which are cusp catastrophe models, then:

$$x_{B_1} = B_1^{\frac{1}{2}} = 0.7886278^{\frac{1}{2}} = 0.88804718$$
$$x_{B_2} = B_2^{\frac{1}{3}} = 0.39518513^{\frac{1}{3}} = 0.733838$$

Since it is a complementary system, according to the principle of taking the average value of complementarity, the time index A_1 has:

$$x_{A_1} = \frac{x_{B_1} + x_{B_2}}{2} = \frac{0.88804718 + 0.733838}{2} = 0.81094259$$

The secondary indicator market expectation and the size of the enterprise constitute the primary indicator space A_2, which is a sharp point mutation model, then:

$$x_{B_3} = B_3^{\frac{1}{2}} = 0.82226117^{\frac{1}{2}} = 0.90678618$$

 $x_{B_4} = B_4^{\frac{1}{3}} = 0.95606845^{\frac{1}{3}} = 0.98513632$

Since it is a non-complementary system, according to the principle of non-complementary "big, medium and small", the spatial indicator A_2 has:

$$x_{A_2} = \min\{x_{B_3}, x_{B_4}\} = \min\{0.90678618, 0.98513632\} = 0.90678618$$

According to the decomposition requirements of the catastrophe series method, the index system for the growth evaluation of technology SMEs is decomposed into two first-level indicators of time A_1 and space A_2.

$$x_{A_1} = A_1^{\frac{1}{2}} = 0.81094259^{\frac{1}{2}} = 0.846947594$$
$$x_{A_2} = A_2^{\frac{1}{3}} = 0.90678618^{\frac{1}{2}} = 0.96790997$$

Because it is a complementary system, according to the principle of taking the average of complementarity, the growth evaluation indicators for technology-based SMEs are:

$$x = \frac{x_{A_1} + x_{A_2}}{2} = \frac{0.846947594 + 0.96790997}{2} = 0.91227671$$

According to the above steps, the results of the two first-level evaluation indicators of growth rate, growth quality, innovation capacity, and enterprise size and time and space of Shaanxi Province from 2015 to 2017 can be calculated. The final evaluation results of 10 enterprises from each province and the country are ranked according to Table 8.

		Ŭ				01			
Name	2017	2016	2015	Mean	Name	2017	2016	2015	Mean
Flag	0.9122	0.9140	0.8653	0.8919	ZhengChan	0.8623	0.8587	0.8201	0.8533
Electronic s	7671	6089	2325	8801	g Electronics	5765	539	965	4536
LiDeYa	0.8746	0.8704	0.8417	0.8603		0.8918	0.9043	0.8777	0.8625
Electronic	2417	2964	193	4022	Maurer	6245	5927	9897	8084
	0.8961	0.8856	0.8679	0.8861	Fang	0.7477	0.8667	0.8778	0.8833
TIRAIN	5922	7927	8321	140 9	YuanMing	5256	2257	0739	8515
	0.8814	0.8910	0.8615	0.8850		0.8590	0.7860	0.7754	0.7838
CLUbank	279	4957	6306	3853	ShanKong	0227	1208	7251	0751
BoDa	0.9243	0.9028	0.8673	0.9113	SATPRO	0.4867	0.8803	0.4803	0.8946
software	1101	1122	3891	8218	M&C	2033	991	0342	7042
Bangzhen	0.7938	0.8735	0.8519	0.8535		0.9077	0.4555	0.8749	0.7699
g technolog	5156	2651	1543	6261	XICI Electronic	8143	6685	0694	9525
y y									
MICROSE	0.9494	0.9171	0.8811	0.9190	Conver	0.4546	0.4618	0.4670	0.4620
NSOE	553 1	009 2	7735	1211	Seriwas	0918	036 4	9922	0398
Day	0.8122	0.8100	0.4132	0.4190	Reactor	0.8413	0.4631	0.8743	0.4484
Naturay	1211	6232	1174	474 7	Microelect ronics	9213	2497	7442	3458
WeiHeng	0.3833	0.7983	0.8268	0.7826		0.7942	0.8667	0.8265	0.8555
Naturay	569	5007	7875	8958	CMEC	5321	2257	2813	105

Table 8. 2017-2015 growth value of science and technology SMEs in Shaanxi Province

6. Summary

According to the growth evaluation value, the growth of small and medium-sized enterprises is divided into high growth, medium growth and low growth, and the growth of technologybased SMEs is evaluated. The grading standards are shown in Table 9.

		Table 9. Growth scale
Growth Evaluation Value	Growth of SMEs	Business growth
x>0.9	High growth	The company grows fast and stands out in the market competition
0.6 <x<0.9< td=""><td>Medium growth</td><td>The growth rate of the company is average, and it can barely follow the development of the market</td></x<0.9<>	Medium growth	The growth rate of the company is average, and it can barely follow the development of the market
X<0.6	Low growth	The company's growth rate is low, and it is facing elimination from the market at any time

Table Q Growth scale

After comparing the tables, we can conclude that among the 18 technology-based SMEs listed in Shaanxi Province for three years from 2015 to 2017, there are 2 high-growth technologybased SMEs, accounting for 11.11% of the participating companies; There are 13 high-tech SMEs, accounting for 72.22% of the participating enterprises; 3 low-tech SMEs, accounting for 16.67% of the participating enterprises, as shown in the figure below.

Shaanxi Province's technology-based SMEs are less in low-growth state, and more in mediumgrowth may be because the government of Shaanxi Province has gradually realized the importance of technology-based SMEs in promoting regional economic development and job creation In time, relevant support policies for technology-based SMEs were introduced in a timely manner. Another part may be that Shaanxi has more relevant research institutes and universities in the information technology industry, which provide certain technical support for the information technology industry and enable it to acquire technology. It has a greater advantage over other provinces. Although there are more medium-growth, it is also less for high-growth. According to the annual reports of 10 technology-based SMEs in Shaanxi Province, it can be found that most of their suppliers are from the western region. Shaanxi Province's technology-based SMEs have a low degree of networking, the value chain channels in the network are not smooth, the division of labor among enterprises is not clear, the coordination mechanism is not perfect, and the growth of networking is insufficient. (1) Small and medium-sized enterprises are in the initial stage of networked growth. SMEs are in the rising development stage, but most of them are operating on a small scale. (2) The role of government organizations in the network is not obvious. The government's role in the management and regulation of SMEs' networked growth is not standardized, and there are problems of their own policies and unclear boundaries.

Even though the current network level of technology-based SMEs in Shaanxi Province has improved a lot, it has severely restricted the development of enterprise clusters. There are many business relationships between technology-based SMEs, especially cluster technologybased SMEs. The specialized division of labor is weak in assisting and cooperating, but there is still no interdependence among enterprises, mutual trust between enterprises in the network, and their industries and products. The structure of this aspect is oriented towards the market for enterprise development, and the risks are relatively high. At present, there are many incomplete cooperation mechanisms, and the cooperation and interaction mechanisms are also lacking. University research and development capabilities and scientific research institutions are currently not fully utilized. In order to achieve healthy development for enterprises, cluster enterprises have technological innovation as the core, low degree of networking, and insufficient technological innovation capabilities. They cannot form complementary advantages among enterprises, which will inevitably have an adverse impact on the growth of enterprise networks.

At the same time, the degree of networking is low, and the core competitiveness of enterprises located in the center of the network is poor, and the impact on surrounding enterprises is small. Small and medium-sized enterprises located around the network use resources inefficiently and rely heavily on the environment. Although the technology-based SMEs in the network can improve their competitiveness to a certain extent, the cooperation with the school's "industry-study-research" is not strong. Many technology-based SMEs entering the network are not using resources to grow, but through administrative means or Imitating the economy to grow, for example, through government tax cuts or government concessions, not through the value chain channels in the network, which will lead to unfavorable division of labor and affect the coordination mechanism. This brings great disadvantages to the overall networked growth.

References

- [1] Frank K. The effect of growth on the value relevance of accounting data. Journal of Business Research. Vol.55(2002) No.1,p.69-78.
- [2] Storey D J. New firm growth and bank financing [J]. Small Business Economics. Vol. 42 (1994) No. 2, p. 139-150.
- [3] Ghosh B C, Tan W L, Tan T M, et al. The Key Success Factors, Distinctive Capabilities, and. Strategic Thrusts of Top SMEs in Singapore [M]. Journal of Business Research. 2001, p. 209-221.
- [4] Macmillan I C, Siegel R, Narasimha P N S. Criteria used by venture capitalists to evaluate. New venture proposals [J]. Journal of Business Venturing, Vol. 1 (1985) No. 1, p. 119-128.
- [5] Zhao Zhongwei, Wang Ping, Liu Mingyao. Evaluation of the Growth of High-tech Enterprises Based on the Perspective of Dynamic Capabilities [J]. Science and Technology Management Research. Vol. 32(2016) No. 23 p. 74-77.
- [6] Wang Yuzheng, Wang Hong, Chen Xinde. Research on the Design of Evaluation Indexes for Small and Medium-sized Sci-tech Enterprises: A Case Study of Shanghai Songjiang Science and Technology "Little Giant" Enterprise [J]. Science & Technology Progress and Policy. Vol. 26 (2009) No. 5, p. 142- 147.
- [7] Wu Dan. Review and Prospect of High-tech Enterprise Growth Evaluation Research [J]. Industrial Technology & Economy. Vol. 35 (2016) No. 3, p. 95-101.
- [8] Wang Juying, Wang Bo. Research on the Networked Growth of Sci-tech SMEs Based on Resource-Strategy-Capability [J]. Science and Technology Management Research. Vol. 28 (2008) No. 12, p. 300-302.
- [9] Sui Bo, Xue Huifeng. Enterprise Growth Evaluation Model [J]. Systems Engineering, 2005, 23 (6): 67-72.
- [10] Keizer JA, Dijkstra L, Halman JI M. Explaining innovative efforts of SMEs.: An. Exploratory survey among SMEs in the mechanical and electrical engineering sector in The Netherlands [J]. Technovation. Vol. 22 (2002) No. 1, p. 1 -13.
- [11] Kakati M. Success criteria in high-tech new ventures [J]. Technovation. Vol. 23 (2003) No. 5, p. 447-457.
- [12] Yin Xianan, Zhu Lianmei, Bao Xinzhong. Evaluation of High-tech Enterprise Growth Based on VIKOR Method [J]. Finance and Accounting News, 2015 (34): 38-41. Vol. 34 (2015), p. 38-41.
- [13] Chen Xiaohong, Peng Jia, Wu Xiaojin. Research on SME Growth Growth Evaluation Model Based on Catastrophe Series Method [J]. Finance and Economics Research. Vol. 20 (2004) No. 11, p. 5-15.
- [14] Mu Jing, Han Wenxiu, Li Quansheng. SMEs Growth Evaluation Model Based on Principal Component Analysis and Its Application [J]. Journal of Systems Management. Vol. 14 (2005) No. 4, p. 369-371.
- [15] Chen Xiaohong, Zou Xiangjuan, Tong Jian. Research on the Effectiveness of SME Growth Evaluation Method——Empirical from Shanghai and Shenzhen Stock Markets [J]. Contemporary Economic Sciences. Vol. 27 (2005) No. 5, p. 70-75.
- [16] Zeng Fanfu, Peng Chenming, Lu Pengyue, et al. Research on Evaluation of Growth of Innovative Enterprises [J]. Xinjiang Social Science. Vol. 1 (2016), p. 31-38.
- [17] Lei Yong, Tan Yanlin, Zhang Xiaohong. Application of Two-dimensional Judgment Model in Enterprise Growth Evaluation [J]. Enterprise Technology Development. Vol. 24 (2005) No. 8, p. 69-71.
- [18] Shi Yan. Accounting Management of Enterprise Receivables under the New Accounting Standards [J]. Chinese and Foreign Entrepreneurs. Vol. 18 (2013), p. 58-58.
- [19] Tang Yuejun, Song Yuanyang. The Impact of Chinese Enterprise Size and Age on Enterprise Growth: Panel Data from Listed Manufacturing Companies [J]. Industrial Economics Research. Vol. 6 (2008), p. 28-35.
- [20] Yi Rong, An Yilong. Evaluation of Enterprise Growth Based on Catastrophe Series Theory [J]. Statistics and Decision. Vol. 19 (2014), p. 183-186.

[21] Li Qian, Zhang Wenjie. Evaluation Model of Small and Medium-sized Enterprises Growth Based on Grey Relational Degree [J]. Shanghai Management Science. Vol. 38 (2016) No. 4, p. 88-91.