Analysis on Influencing Factors of GDP in Hefei under **Econometric Model**

Wenhui Wang¹, Jingqi Liu² and Jiayi Xu

¹School of Economics, Anhui University of Finance and Economics, Bengbu 233030, China

²Bengbu Medical College, Bengbu 233030, China

Abstract

Hefei, Anhui Province, as a member of the world alliance of science and technology cities, a modern manufacturing base and comprehensive transportation hub, an important national scientific research and education base, one of China's four science and education bases, and one of China's favorite reading cities; It has the reputation of "Jianghuai first county and wuchu hub". As the most rapidly developing provincial capital in recent years, its economic structure and development status have a good reference for other cities. This article aims to introduce the impact of local financial budget expenditure, real estate development investment and total retail sales on the economic development of Hefei by using the relevant knowledge of econometrics, and make expectations for the future development prospect of Hefei.

Keywords

Urban GDP; Real Estate; Expenditure.

1. Raising Question

Hefei, the capital of Anhui Province, is located in East China, central Anhui, between the Yangtze River and Huaihe River, surrounded by Chaohu Lake; China city's city center of the Yangtze River Delta is a sub center city established by the State Council, the central city of China's integrated circuit industry, a national science and technology innovation pilot city, and a comprehensive national science center. The "one belt and one road" and the Yangtze River Economic Belt strategic double point City, [1] the core city of Wanjiang City belt, and the central city of G60 science creation corridor. Its GDP has increased rapidly in the past two decades (see Figure 1). Hefei's GDP growth rate from 2001 to 2018 was 2052.5%, making it the provincial capital city with the fastest economic growth. Especially in 2019, Hefei's annual GDP reached 940.94 billion yuan, an increase of 9.35% over the previous year. Among them, the added value of the primary industry was 29.186 billion yuan, an increase of 1.7%; The added value of the secondary industry was 341.532 billion yuan, an increase of 7.7%; The added value of the tertiary industry was 570.222 billion yuan, an increase of 7.8%. In 2020, Hefei's GDP will reach trillion, so we can study it and analyze the reasons for its rapid growth.

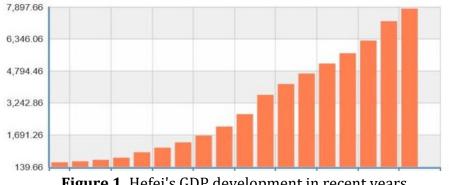


Figure 1. Hefei's GDP development in recent years

2. Theoretical Review

GDP is one of the more important comprehensive statistical indicators and core indicators in the national economic accounting system. Many important economic structures, such as industrial structure, regional economic structure, consumption demand and so on, are expressed through GDP, and they are an important basis for formulating economic structure adjustment strategies and policies. Therefore, the study of Hefei GDP can reflect the proportional relationship between investment and consumption, social production and use and macroeconomic benefits, which provides a certain idea for future development.

3. Model Setting

In order to obtain the numerical value and set the model, the GDP of Hefei from 2003 to 2018 is set as the explanatory variable y (RMB 100 million), the expenditure in the local financial budget X1 (RMB 100 million), the balance of deposits of financial institutions X2 (RMB 100 million), the investment in real estate development X3 (RMB 100 million), and the total retail sales X4 (RMB 100 million). Based on this, the regression model is established.

4. Collection of Partial Data

Table 1. National tourism revenue and related data from 2001 to 2019

particular year	GDP (100 million yuan)	Expenditure within local financial budget (100 million yuan)	Balance of various deposits of financial institutions at the end of the year (100 million yuan)	Investment in real estate development (100 million yuan)	Total retail sales of social goods (100 million yuan)
2003	484.96	35.87	1059.62	89.70	207.4332
2004	589.70	44.93	1295.96	138.32	281.7239
2005	853.57	57.64	1521.85	190.29	324.3930
2006	1073.76	79.40	1862.46	280.64	384.3098
2007	1334.61	169.32	2231.33	385.01	469.0023
2008	1664.84	222.08	2725.68	565.47	617.2075
2009	2102.12	180.90	3735.31	670.36	801.5844
2010	2701.61	259.43	4541.78	819.03	1000.3416
2011	3636.60	338.51	5756.30	880.29	1281.3189
2012	4164.34	389.50	6913.84	913.80	1493.7888
2013	4672.91	438.62	8232.58	1105.81	1724.1704
2014	5180.56	500.34	9142.68	1127.36	1949.6970
2015	5660.27	571.54	10967.91	1259.14	2183.6501
2016	6274.38	614.85	13150.95	1352.59	2445.6959
2017	7213.45	655.90	13881.72	1557.41	2728.5104
2018	7822.91	1004.91	15338.45	1527.17	2976.7420

Through the search and analysis of the database system of China economic network and the official website of the Bureau of statistics, the GDP and some influencing factors of Hefei in recent 20 years are obtained. The specific data are shown in the Table 1.

5. Model Initial Estimation

Trend analysis: enter plot y X1 x2 X3 X4 in eviews9.0 As shown below:

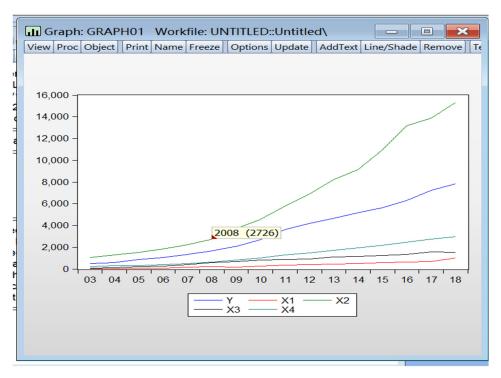


Figure 2. Trend chart analysis

It can be seen from the trend chart that the change direction of the explained variable GDP y (RMB 100 million), the balance of deposits of financial institutions X2 (RMB 100 million) and the total retail sales of social goods X4 (RMB 100 million) at the end of the year is the same, there is a certain correlation between them, and the change direction is not obvious with other explanatory variables.

Correlation diagram analysis: input in Eviews 9.0 respectively

- SCAT X1 Y
- SCAT X2 Y
- SCAT X3 Y

SCAT X4 Y

It can be seen from the correlation chart that there is a positive linear correlation between the expenditure in the local financial budget X1 (billion yuan), the balance of deposits in financial institutions X2 (billion yuan), the investment in real estate development X3 (billion yuan), the total retail sales X4 (billion yuan) and the explained variable GDP y.

Correlation coefficient analysis: enter cor y X1 x2 X3 X4 in eviews9.0

ISSN: 2688-9323

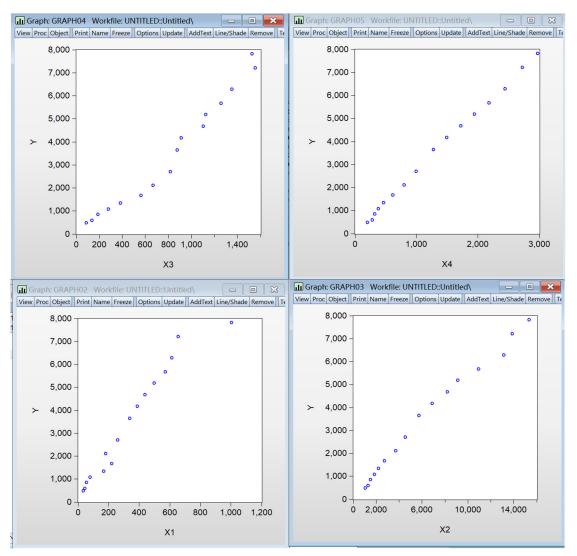


Figure 3. Correlation diagram analysis (a)

G Group: UN	TITLED Work	file: UNTITLED	::Untitled\		- 0	×
View Proc Obje	ct Print Name	Freeze	Sheet Stats Spe	c		
		Corr	elation			
	Y	X1	X2	X3	X4	
Y	1.000000	0.973380	0.993026	0.983008	0.998836	~
X1	0.973380	1.000000	0.972034	0.944255	0.973753	
X2	0.993026	0.972034	1.000000	0.967306	0.996991	
X3	0.983008	0.944255	0.967306	1.000000	0.979223	
X4	0.998836	0.973753	0.996991	0.979223	1.000000	

Figure 4. Correlation diagram analysis (b)

It can be seen from the figure that the correlation coefficients between the GDP of the explained variable y and the expenditure in the local financial budget of the explanatory variable X1 (billion yuan), the balance of deposits of financial institutions X2 (billion yuan), the investment in real estate development X3 (billion yuan), and the total retail sales of social goods X4 (billion yuan) are 0.973380, 0.993026, 0.983008 and 0.998836 respectively, and their absolute values are greater than 0.6, The preliminary results show that there may be a positive and highly linear correlation between GDP y and local budget expenditure X1 (billion yuan), year-end deposit

balance X2 (billion yuan), real estate development investment X3 (billion yuan), and total retail sales X4 (billion yuan).

According to the above analysis and economic theory, a multiple linear regression model of influencing factors of Hefei's GDP is preliminarily established:

$$y = c + \beta_1 x 1 + \beta_2 x 2 + \beta_3 x 3 + \beta_4 x 4 + \mu$$

6. Multicollinearity Test

According to the relevant data in the table, use eviews9.0 and the least square method for multiple linear regression analysis. Input LS Y C X1 x2 X3 X4 in eviews9.0, and the results are as follows:

Dependent Variable: \ Method: Least Square Date: 12/13/20 Time Sample: 2003 2018 ncluded observations	es : 18:08			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	-55.07029	49.07146	-1.122247	0.2857
X1	0.277764	0.377057	0.736665	0.4767
X2	-0.212922	0.073933	-2.879945	0.0150
X3	0.173074	0.282889	0.611809	0.5531
X4	3.561860	0.505251	7.049682	0.0000
R-squared	0.999050	Mean depen	dent var	3464.412
Adjusted R-squared	0.998705	S.D. depend	ent var	2457.366
S.E. of regression	88.43389	Akaike info c	riterion	12.05269
Sum squared resid	86026.08	Schwarz crite	erion	12.29413
_og likelihood	-91.42155	Hannan-Quir		12.06506
	2892.817	Durbin-Wats	on stat	1.448104
Prob(F-statistic)	0.000000			
F-statistic Prob(F-statistic)	2892.817 0.000000	Durbin-Wats	on stat	1.4481

Figure 5. Least square method

Therefore, the report form of the model is:

Y= -55.0702921022 + 0.277764497482*X1 - 0.212921634916*X2 + 0.173073970316*X3 + 3.56185993802*X4

(49.07146) (0.377057) (0.073933) (0.282889) (0.505251)

t=(-1.122247) (0.736665) (-2.879945) (0.611809) (7.049682)

R²=0.999050 F=2892.817 prob(F)=0.000000 DW=1.448104

Model statistical inference test

Economic significance test: it can be seen from the Figure that the coefficient of variable X2 is negative. However, according to the general inference, the coefficient of x2 should be positive, because GDP = consumption + savings. The larger the deposit balance of financial institutions at the end of the year, the higher the GDP. Therefore, this negative sign is not in line with the economic significance.

Goodness of fit test: R2 = 0.999050, close to 1, indicating that the model has a high degree of fitting to the sample data.

F test: F = 2892.8173.36, and the prob (f) value of 0.000000 is also significantly less than that, indicating that the linear relationship of the model is significant, or the explanatory variable, the expenditure in the local financial budget X1 (billion yuan), the balance of various deposits of financial institutions X2 (billion yuan), the investment in real estate development X3 (billion yuan), and the total retail sales X4 (billion yuan) have a significant impact on the explained variable GDP y.

T test: the T values of expenditure X1 in local financial budget and investment X3 in real estate development are less than 2, indicating that these parameters have no significant impact on GDP y, and the absolute values of T values of other parameters are greater than 2, indicating that other parameters have a significant impact on GDP y.

Multicollinearity test

Multicollinearity test: considering that there are too many factors affecting the selection, the cor command can be used to test the correlation coefficient. The results are shown in the table below:

	Table 2. Display results								
	Y	X1	X2	X3	X4				
Y	1.000000	0.973380	0.993026	0.983008	0.998836				
X1	0.973380	1.000000	0.972034	0.944255	0.973753				
X2	0.993026	0.972034	1.000000	0.967306	0.996991				
X3	0.983008	0.944255	0.967306	1.000000	0.979223				
X4	0.998836	0.973753	0.996991	0.979223	1.000000				

Table 2. Display results

It can be seen from the above table that the correlation coefficient between explanatory variables is greater than 0.8 and less than 0.8, which does not rule out the possibility of multicollinearity.

Further, with the help of auxiliary regression model test and variance expansion factor test, after Eviews 9.0 related operation

ependent Variable: X2 ethod: Least Squares ate: 12/13/20 Time: 1 ample: 2003 2018 cluded observations: 1	9:55		1			Dependent Variable:) Method: Least Square Date: 12/13/20 Time Sample: 2003 2018 Included observations	es : 19:51			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Ĩ	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1 X3 X4	-91.78585 -0.291120 -2.180210 6.396367	1.469845	-0.483689 -0.198062 -2.401867 9.208930	0.6373 0.8463 0.0334 0.0000	п	C X2 X3 X4	-7.085507 -0.011193 -0.147977 0.418125	0.056511 0.212326	-0.188879 -0.198062 -0.696931 1.137734	0.8463 0.4991
squared ijusted R-squared E. of regression Im squared resid g likelihood statistic ob(F-statistic)	0.994952 345.2968 1430758. -113.9120	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor	nt var erion ion i criter.	6397.401 4859.771 14.73900 14.93215 14.74889 1.317094	0 0	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.950444 0.938056 67.70514 55007.83 -87.84415 76.71751 0.000000	S.D. depend Akaike info o Schwarz crit Hannan-Qui Durbin-Wats	dent var criterion terion inn criter.	347.7338 272.0323 11.48052 11.67367 11.49041 1.545444
View Proc Object Print	t Name Freeze	Estimate Forecas	t Stats Resid	S		View Proc Object Print	Name Freeze E	stimate Forecast	Stats Resids	
Dependent Variable: Method: Least Squar Date: 12/13/20 Time Sample: 2003 2018 Included observations	X4 res e: 19:57			,		Dependent Variable: X Method: Least Squares Date: 12/13/20 Time: Sample: 2003 2018 Included observations:	19:56			
Method: Least Squar Date: 12/13/20 Time Sample: 2003 2018	X4 res e: 19:57	Std. Error	t-Statistic	Prob.		Method: Least Squares Date: 12/13/20 Time: Sample: 2003 2018	19:56	Std. Error	t-Statistic	Prob.
Method: Least Squar Date: 12/13/20 Time Sample: 2003 2018 Included observations	X4 res e: 19:57 s: 16	Std. Error 28.02077 0.204675 0.014872 0.104279	t-Statistic 0.117812 1.137734 9.208930 4.102237	Prob. 0.9082 0.2774 0.0000 0.0015		Method: Least Squares Date: 12/13/20 Time: Sample: 2003 2018 Included observations:	19:56 16	46.05713 0.377210	t-Statistic 1.478203 -0.696931 -2.401867 4.102237	Prob. 0.1651 0.4991 0.0334 0.0015

Figure 6. Variance expansion factor

	Table 3. VIF								
Model	R ²	F statistic	Adjoint probability of F	VIF	TOL				
X1=f (X2, x3, x4)	0.950444	76.71751	0.000000	20.17919	0.049556				
X2=f (X1, x3, x4)	0.995961	986.4134	0.000000	247.5860	0.004039				
X3=f (X1, x2, x4)	0.973348	146.0812	0.000000	37.52064	0.026652				
X4=f (X1, x2, x3)	0.997662	1706.580	0.000000	427.7160	0.002338				

The relevant data obtained are as follows:

It can be seen from the table that except that the variance expansion factor of each index is greater than 10 or the tolerance tol is less than 0.1, or the adjoint probability of F statistics is close to zero or less than the significance level of 0.05, it indicates that there is a certain multicollinearity. Finally, the regression model is established according to the principle of stepwise regression.

The univariate basic linear regression model is established

According to the correlation coefficient chart, the correlation coefficient between Y and X4 is the largest, so the univariate basic linear regression model of Y and X4 is established first. The results are as follows:

View Proc Object Print	Name Freeze [E	stimate Forecas	t Stats Reside	5]
Dependent Variable: Y Method: Least Square Date: 12/13/20 Time: Sample: 2003 2018 Included observations:	s 20:12			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	38.70436	53.80195	0.719386	0.4837
X4	2.626375	0.033891	77.49453	0.0000
R-squared	0.997674	Mean depen	dent var	3464.412
Adjusted R-squared	0.997508	S.D. depende	ent var	2457.366
S.E. of regression	122.6701	Akaike info c	riterion	12.57334
Sum squared resid	210671.4	Schwarz crite	erion	12.66992
Log likelihood	-98.58675	Hannan-Quir	nn criter.	12.57829
				0 700070
F-statistic	6005.402	Durbin-Wats	on stat	0.799979

Figure 7. Linear model

Taking the above univariate linear regression model as the basic model, other variables are successively introduced to estimate the binary regression model. The results are as follows:

Equation: EQ07 Workflie: UNITITED: Unitited View Proc Object Print Name Freeze Estimate Forecast Dependent Variable: Y Method: Least Squares Date: 12/13/20 Time: 20:14 Sample: 2003 20:18 Included observations: 16		E Equation: EQ08 View Proc Object Print Dependent Variable: Method: Least Squar Date: 12/13/20 Time Sample: 2003 2018 Included observations	t Name Freeze I Y es a: 20:15				Equation: EQ09 W View Proc Object Print Dependent Variable: Y Method: Least Square Date: 12/13/20 Time: Sample: 2003 2018 Included observations:	Name Freeze 1 s 20:15			s
Variable Coefficient Std. Error	t-Statistic Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C 41.61732 56.90118 X4 2.588797 0.154151 X1 0.132581 0.529582	0.731396 0.4775 16.79391 0.0000 0.250350 0.8062	X4	-47.43411 3.850283 -0.236074	42.48252 0.299901 0.057673	-1.116556 12.83850 -4.093352	0.2844 0.0000 0.0013	C X4 X3	-37.59210 2.318055 0.595166	60.37735 0.149846 0.283245	-0.622619 15.46958 2.101241	0.5443 0.0000 0.0557
R-squared 0.997685 Mean depend Adjusted R-squared 0.997329 S.D. depende S.E. of regression 126.9960 Atable thor Comparison S.U. of uquered resid 206960.6 Schwarz crite Log likelihood 9-85.4277 Harman-Could F-statistic 201.696 Durbin-Watsc Prob(F-statistic) 0.000000 Interval	nt var 2457.366 terion 12.69353 rion 12.83839 n criter. 12.70095	Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.998984 0.998828 84.14320 92041.01 -91.96222 6390.303 0.000000	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats	ent var riterion erion nn criter.	3464.412 2457.366 11.87028 12.01514 11.87770 1.329297	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.998264 0.997997 109.9863 157260.7 -96.24759 3737.399 0.000000	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Quii Durbin-Wats	ent var riterion erion nn criter.	3464.412 2457.366 12.40595 12.55081 12.41337 1.148708

Figure 8. Binary regression model

Therefore, the result of y = f(x4, x1) estimation is the optimal binary regression model. Based on this, a ternary regression model is established:

E Equation: EQ10 V View Proc Object Print Dependent Variable: Y Method: Least Square Date: 12/13/20 Time: Sample: 2003 2018 Included observations:	Name Freeze E s 20:18		· · · · · · · · · · · · · · · · · · ·		Equation: EQ11 View Proc Object Print Dependent Variable: ` Method: Least Square Date: 12/13/20 Time Sample: 2003 2018 Included observations	Name Freeze F PS : 20:18			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-43.28711	43,94157	-0.985106	0.3440	C	-35.52710	61.62510	-0.576504	0.5749
X4	3.798035	0.317366	11.96738	0.0000	X4	2.199935	0.225565	9.752995	0.0000
X1	0.232265	0.359884	0.645389	0.5308	X1	0.339750	0.477331	0.711771	0.4902
X2	-0.238695	0.059152	-4.035302	0.0017	Х3	0.637288	0.294779	2.161915	0.0515
R-squared	0.999018	Mean depen	dent var	3464.412	R-squared	0.998334	Mean depen	dent var	3464.412
Adjusted R-squared	0.998772	S.D. depend		2457.366	Adjusted R-squared	0.997918	S.D. depend	ent var	2457.366
S.E. of regression	86.09752	Akaike info c	riterion	11.96116	S.E. of regression	112.1347	Akaike info o	riterion	12.48960
Sum squared resid	88953.39	Schwarz crite	erion	12.15430	Sum squared resid	150890.4	Schwarz crit	erion	12.68274
Log likelihood	-91.68925	Hannan-Qui	nn criter.	11.97105	Log likelihood	-95.91678	Hannan-Qui	nn criter.	12.49949
F-statistic	4069.132	Durbin-Wats	on stat	1.429299	F-statistic	2397.206	Durbin-Wats	on stat	1.203595
Prob(F-statistic)	0.000000				Prob(F-statistic)	0.000000			

Figure 9. Ternary regression

Variables are introduced into the model one by one, and the step-by-step estimation results are listed in the table below.

		Table 4. Vallo			
equation	X4	X1	X2	Х3	\overline{R}^2
(1)Y=f(x4)	2.626375				0.007674
(1) $1 - 1(x4)$	(77.49453)				0.997674
(2)Y=f(x4,x1)	2.588797	0.132581			0.997685
\bigcirc $(,,)$	(16.79391)	(0.250350)			0.777 000
(3)Y=f(x4,x2)	3.850283		-0.236074		0.998984
	(12.83850)		(-4.093352)		0.990904
(4)Y=f(x4,x3)	2.318055			0.595166	0.998264
	(15.46958)			(2.101241)	0.770204
(V) ((11))	3.798035	0.232265	-0.238695		0.000010
6Y=f(x4,x1,x2)	(11.96738)	(0.645389)	(-4.035302)		0.999018
(7)V=f(y4 y1 y2)	2.199935	0.339750		0.637288	0.998334
(7)Y=f(x4,x1,x3)	(9.752995)	(0.711771)		(2.161915)	0.996554
(10) V_f(4122)	3.561860	0.277764	0.173074	-0.212922	0.000050
(10)Y=f(x4,x1,x3,x2)	(7.049682)	(0.736665)	(0.611809)	(-2.879945)	0.999050

Table 4. Various factors

After repeated introduction, test and elimination, the ideal model is finally determined as

Y = -37.5920968011 + 2.31805470613*X4 + 0.595166252133*X3(60.37735) (0.149846)(0.283245)T = (-0.622619) (15.46958)(2.101241) R^2 =0.998264 \overline{R}^2 = 0.997997 F=3737.399 DW=1.148708

ISSN: 2688-9323

Equation: EQ09 W View Proc Object Print Dependent Variable: Y Method: Least Square Date: 12/13/20 Time: Sample: 2003 2018 Included observations:	Name Freeze E s 20:15			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	-37.59210	60.37735	-0.622619	0.5443
X4	2.318055	0.149846	15.46958	0.0000
X3	0.595166	0.283245	2.101241	0.0557
R-squared	0.998264	Mean depen	dent var	3464.412
Adjusted R-squared	0.997997	S.D. depend	ent var	2457.366
S.E. of regression	109.9863	Akaike info c	riterion	12.40595
Sum squared resid	157260.7	Schwarz crite	erion	12.55081
Log likelihood	-96.24759	Hannan-Quir	nn criter.	12.41337
F-statistic	3737.399	Durbin-Wats	on stat	1.148708
Prob(F-statistic)	0.000000			

Figure 10. Ideal model

7. Model Test

Adjustment model statistical inference test

Goodness of fit test: R2 = 0.998264, close to 1, indicating that the model has high goodness of fit for sample data.

F test: F = 3737.399 3.81, and the prob (f) value of 0.000000 is also significantly less than, indicating that the overall linear relationship of the model is significant, or the combination of real estate development investment X3 (billion yuan) and total retail sales X4 (billion yuan) has a significant impact on the Explained variable GDP y.

T test: the T values of real estate development investment x 3 (billion yuan) and total retail sales x 4 (billion yuan) are greater than 2, indicating that the combination of real estate development investment x 3 (billion yuan) and total retail sales x 4 (billion yuan) has a significant impact on the Explained variable GDP y.

Heteroscedasticity test

Given the significance level of 0.05 based on the null hypothesis, use Eviews software to start the test according to view - residual tests - white heteroskedasticity.

-statistic	1.207575	5 Prob. F(5,10) 0.372		
Obs*R-squared	6.023617	Prob. Chi-Sc	0.3039	
Scaled explained SS	2.859076	Prob. Chi-Sc	0.7217	
Test Equation:				
Dependent Variable: R	ESID ²			
Method: Least Square				
Date: 12/13/20 Time:	21:26			
Sample: 2003 2018				
ncluded observations:	16			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	-9590.548	9522.450	-1.007151	0.3376
X4^2	-0.014945	0.096207	-0.155339	0.8796
X4*X3	0.029309	0.385163	0.076095	0.9408
X4	57.96899	82.21043	0.705129	0.4968
X3^2	-0.062348	0.379838 -0.164144		0.8729
X3	-8.848935	134.0904	-0.065992	0.9487
		Mean dependent var		9828.795
R-squared	0.376476		S.D. dependent var	
	0.376476 0.064714		ent var	12172.80
Adjusted R-squared				21.86489
Adjusted R-squared S.E. of regression Sum squared resid	0.064714 11772.34 1.39E+09	S.D. depend Akaike info c Schwarz crite	riterion erion	21.86489 22.15461
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.064714 11772.34 1.39E+09 -168.9191	S.D. depend Akaike info c Schwarz crite Hannan-Qui	riterion erion nn criter.	21.86489 22.15461 21.87972
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.064714 11772.34 1.39E+09	S.D. depend Akaike info c Schwarz crite	riterion erion nn criter.	21.86489 22.15461

Figure 11. Heteroscedasticity test

NR ^ 2 = 5.108704, check the criticality distribution table, (3) = 7.81, NR ^ 2 < 7.81, and the corresponding p value of F statistic is > 0.05. Accept the original hypothesis, and there is no Heteroscedasticity in the model.

Autocorrelation test

Included observations:	21:24			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
с	-37.59210	60.37735	-0.622619	0.5443
X4	2.318055	0.149846		
X3	0.595166	0.283245	2.101241	0.0557
R-squared	0.998264	Mean dependent var		3464.412
djusted R-squared	0.997997	S.D. dependent var		2457.366
S.E. of regression	109.9863	Akaike info criterion		12.40595
Sum squared resid	157260.7	Schwarz criterion		12.55081
og likelihood	-96.24759	Hannan-Quinn criter.		12.41337
-statistic	3737.399	Durbin-Watson stat		1.148708
Prob(F-statistic)	0.000000			

Figure 12. Autocorrelation test

As shown in the Figure, the DW value is 1.148708, the sample size is 16, and the number of explanatory variables (excluding constant terms) is 2. Query the DW distribution table, and you can get the critical values DL = 0.982 and Du = 1.539. Since 1.148708 < 1.539, it is impossible to judge whether there is autocorrelation between error terms. Due to the limitations of DW test, it is impossible to test high-order autocorrelation, and other methods are needed to assist the test.

Partial correlation coefficient test

Click View / residual test / correlogram-q-statistics in the equation window

Equation: UNTIT		~			
View Proc Object Prin	/ _ / _	A	<u> </u>	esids	
Correlogram of Residuals					
Date: 12/13/20 Time: 21:40 Sample: 2003 2018 Included observations: 16					
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
ı 🗾 ı	I I 🗖 I	1 0.417	0.417	3.3360	0.068
I 🔲 I	I I	2 -0.306	-0.581	5.2670	0.072
1	I 🗖 I	3 -0.564	-0.220	12.323	0.006
1 1	1 🗖 1	4 -0.394	-0.262	16.055	0.003
т р т	I I	5 0.041	0.004	16.100	0.007
I I		6 0.376	0.026	20.175	0.003
· 🗖 ·	1 🔲 1	7 0.169	-0.354	21.091	0.004
· 🗖 ·		8 -0.124	-0.020	21.643	0.006
I 🗖 I		9 -0.182	-0.072	23.012	0.006
· 🖬 ·		10 -0.118	-0.164	23.685	0.008
1 D 1		11 0.067	-0.012	23.944	0.013
· 🗖 ·		12 0.137	-0.231	25.302	0.013

Figure 13. Partial correlation coefficient test

It can be seen from the graph that the equation has high-order autocorrelation. In addition, BG test method is adopted. In Eviews, click view, residual diagnostics, series correlation LM Test

Equation: UNTITLE				• • • <mark>•</mark>	×
Breusch-Godfrey Seria	I Correlation L	M Test:			
F-statistic Obs*R-squared	5.003280 7.621665	Prob. F(2,11 Prob. Chi-So		0.0285 0.0221	
Test Equation: Dependent Variable: R Method: Least Squares Date: 12/13/20 Time:	6				
Sample: 2003 2018 Included observations: Presample missing valu	ue lagged resid				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	-13.12710	47.73877	-0.274978	0.7884	
X4	-0.054450	0.120866	-0.450501	0.6611	
X3	0.104957	0.227991	0.460357	0.6542	
RESID(-1)	0.684805	0.243675	2.810322	0.0170	
RESID(-2)	-0.623102	0.248920	-2.503218	0.0293	
R-squared	0.476354	Mean dependent var		-3.81E-13	
Adjusted R-squared	0.285937	S.D. dependent var		102.3916	
S.E. of regression	86.52322	Akaike info c	riterion	12.00901	
Sum squared resid	82348.94	Schwarz crite	erion	12.25044	
Log likelihood	-91.07207	Hannan-Quir	nn criter.	12.02137	
F-statistic	2.501640	Durbin-Wats	on stat	2.385156	
Prob(F-statistic)	0.103136				\sim

Figure 14. BG inspection

It can be seen from the above table that = 7.621665 > (2) = 5.99147, prob (TR) = 0.0221 is less than the given significance level = 0.05, there is autocorrelation, and the autocorrelation is adjusted now.

Generalized difference method to adjust autocorrelation

Enter the command LS Y C X3 X4 AR (1) using the Cochran okot iterative method

🔳 Equation: UNTITLED Workfile: UNTITLED::Untitled\ 📃 🖃 💌						
View Proc Object Print	Name Freeze [Estimate Forecas	t Stats Resids			
Dependent Variable: Y Method: ARMA Maximum Likelihood (BFGS) Date: 12/13/20 Time: 21:56						
Sample: 2003 2018						
Included observations: 16						
Convergence achieved after 4 iterations						
Coefficient covariance computed using outer product of gradients						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	-22.10100	61.54559	61.54559 -0.359100			
X3	0.592010	0.277090	2.136528	0.0584		
X4	2.311729	0.147612	15.66085	0.0000		
AR(1)	0.655663	0.319357 2.053074		0.0672		
AR(2)	-0.589933	0.236208	-2.497513	0.0316		
SIGMASQ	4995.102	2870.591	1.740095	0.1125		
R-squared	0.999118	Mean dependent var		3464.412		
Adjusted R-squared	0.998676	S.D. dependent var		2457.366		
S.E. of regression	89.39890	Akaike info criterion		12.16921		
Sum squared resid	79921.63	Schwarz criterion		12.45893		
Log likelihood	-91.35366	Hannan-Quinn criter.		12.18404		
F-statistic	2264.714	Durbin-Watson stat		2.216517		
Prob(F-statistic)	0.000000					
Inverted AR Roots	.3369i	.33+.69i				

Figure 15. Autocorrelation test

From the Figure, DW = 2.216517, the critical value DL = 0.982, Du = 1.539, and 4-1.539 > 2.216517 > 1.539 can be obtained from the above data, so there is no autocorrelation after correction.

Finally, the regression equation is

```
Y = -22.1009995149 + 0.592009875514*X3 + 2.31172895349*X4 +[AR (1)=0.655662836979, AR(2)=-0.589932912832,UNCOND]
```

(61.54559)(0.277090)(0.147612)(0.319357)(0.236208)T=(-0.359100)(2.136528)(15.66085)(2.053074)(-2.497513) R^2 =0.999118 \overline{R}^2 = 0.998676DW=2.216517F=2264.714prob(F)=0.00000

The estimation results of the model show that the GDP y mainly depends on the investment in real estate development X3 and the total retail sales X4. Under the condition that other factors remain unchanged, for every 100 million yuan increase in real estate development investment X3, the resident consumption level y will increase by 592010 million yuan; With other factors unchanged, when the total retail sales of social goods X4 increases by 100 million yuan, the consumption level of residents will increase by 231.172.9 million yuan.

8. Conclusions and Recommendations

1. Real estate plays an important role in promoting urban economic development

With the acceleration of China's urbanization process and the rapid economic development, real estate has developed rapidly. At present, it plays an important role in economic development, has become a pillar industry of the economy, and its contribution to GDP is becoming increasingly prominent. It can drive the development of multiple industrial chains, from upstream production to downstream residence, stimulate the development of multiple industries, increase the contribution of various industries to GDP, and thus play an important role in economic development. With the continuous development of Hefei, a large number of people flow in, which leads to the increase of house purchase demand. Sufficient labor force, employment and migrant population provide a broad consumer market for real estate in Hefei. At the same time, the development of urbanization is also that the population will be further concentrated. The radiation effect of mega cities on surrounding cities is becoming more and more obvious, and the degree of regional integration will be further improved, to drive the housing demand in the suburbs and surrounding areas, which will also stimulate the vitality of the city's real estate market.

2. Social consumption contributes to economic growth

As an integral part of GDP, the total retail sales of social consumer goods are the total amount of consumer goods directly sold by various industries of the national economy to urban and rural residents and social groups. It can reflect the social supply of various commodities from all walks of life and the total amount of consumer goods of residents; It is an important index to study the changes of domestic retail market and reflect the degree of economic prosperity. The troika driving economic growth are investment, export and consumption. The total retail sales of social consumer goods reflect the level of social consumption.

proposal

1. Strengthen the management of the real estate market and promote the steady development of the real estate market

As a pillar industry to promote economic growth, real estate has played an important role in economic growth, and its multiplier effect on economic growth is very prominent. Due to the

ISSN: 2688-9323

huge radiation range of real estate, most industries are driven by it, which also leads to the contribution rate of real estate to economic growth of more than 10% in recent years. According to the estimates of relevant experts, for every 1 percentage point increase in investment growth in real estate, the growth rate of GDP will increase by 0.9 percentage points; In addition, according to incomplete statistics, the real estate industry has absorbed at least 30% of the floating population; Therefore, from the perspective of policy, it is suggested to focus on stability. Under the condition that the overall economic environment has not changed greatly, it is best to focus on strict real estate regulation policies and still play the role of long-term mechanism. The real estate industry is different from the stock market. The impact of house price fluctuations is immeasurable. Therefore, we must not let this industry affecting the social economy in an uncontrollable state, so it must be stable.

2. Appropriately control prices and stimulate consumption

As an important factor affecting consumption, prices reflect the purchasing power of residents, but too high prices will reduce the social purchasing power. Affected by the traditional consumption habits, China has become a large country of savings. Residents are used to depositing most of their personal surplus income in banks for security and appreciation. However, a sharp rise in prices will lead to a decline in the income of bank deposits. Once the price rise rate exceeds the interest rate of bank deposits and is exceeded by the price rise rate, there will be a negative interest rate, the money deposited in the bank will not increase, but depreciate, resulting in the shrinkage of residents' property; Then it affects residents' consumption confidence and consumption psychology. Families tighten their spending, calculate carefully, reduce their consumption tendency, and inhibit residents' purchase desire; Finally, the consumption level of society will be reduced and the total retail sales of social goods will be reduced. Therefore, the government's appropriate price control will increase residents' consumption psychology and purchasing power, thus increasing the total retail sales and promoting the development of GDP.

3. Continue to stabilize the development of industry

Industry is a very important material production department in the national economy. Without the existence and development of industry and the machinery and equipment provided by industry for other sectors, there will be no further development of other sectors of the national economy; Moreover, the degree of industrial modernization and its development scale ultimately determine the appearance of the whole national economy. Therefore, industry is the leading factor of the national economy. Stabilizing the development of industry will make the social economy grow continuously, to drive the development of other industries.

References

- [1] Journal of Cleaner Production Fu, Bitian; Kurisu, Kiyo; Hanaki, Keisuke; Che, Yue "Influential factors of public intention to improve the air quality in China"-2018.
- [2] Acute Medicine & Surgery Ishihara, Koichi; Hagiwara, Shuichi; Aoki, Makoto; Murata, Masato; Kaneko, Minoru; Kanbe, Masahiko; Oshima, Kiyohiro-"Prognostic factors in emergency patients aged 90 years and older"-2014.
- [3] Bo Chen; Lei Cao; Yong Zhou; Ping Yang; Hong-Wei Wan; Gui-Qing Jia; Liu Liu; Xiao-Ting Wu-"Glutathione S-Transferase T1 (GSTT1) Gene Polymorphism and Gastric Cancer Susceptibility: A Meta-Analysis of Epidemiologic Studies"-2010.