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Abstract	

From	the	performance	assessment	perspective,	it	is	of	central	importance	to	assess	the	
reliability	 of	 a	 stochastic	 flow	 distribution	 network	 (SFDN)	 in	 which	 each	 node	
represents	a	supplier,	a	 transfer	center,	or	a	market,	and	each	route	 joining	a	pair	of	
nodes,	 in	 addition	 to	multi‐valued	 capacities,	 is	 featured	with	 a	 spoilage	 rate.	 As	 a	
consequence,	network	reliability	is	the	probability	that	the	SFDN	is	able	to	distribute	the	
required	 quantity	 of	 goods	 to	 meet	 the	 market	 demand	 under	 delivery	 spoilage	
considerations.	A	minimal	paths	 (MPs)	based	algorithm	 is	presented	 to	 calculate	 the	
network	reliability,	 together	with	an	example	 to	 illustrate	 the	procedure.	A	real	 fruit	
distribution	network	is	accordingly	discussed	to	demonstrate	the	utility	of	the	algorithm	
and	the	managerial	implication	of	network	reliability.	
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1. Introduction	

Many	real‐life	networks	can	be	modeled	as	stochastic	flow	networks,	such	as	manufacturing	
networks,	 electric	 power	 networks,	 computer	 networks,	 or	 logistics	 networks	 [1].	 In	 the	
logistics	 networks,	 transportation	 activity	 plays	 an	 essential	 role.	 Transportation	 activity	
involves	 the	 processes	 of	 product	 manufacturing,	 transportation,	 storage,	 and	 sale.	 Many	
companies	utilize	product	attribute,	market	position,	 technology,	regional	culture,	 labor	and	
policy	to	design	their	transportation	network	[2].	A	transportation	network	is	composed	of	a	
series	 of	 nodes	 and	 routes,	where	 each	 route	 represents	 a	 supplier,	 a	 transfer	 center,	 or	 a	
market	and	each	route	joining	a	pair	of	nodes	can	represent	the	logistics	activity	[1].	There	is	a	
carrier	on	each	route	responsible	for	the	delivery	service	on	this	section	of	the	road.	In	the	real	
world,	the	available	delivery	capacity	of	each	carrier	is	uncertain.	That	is,	the	available	delivery	
capacity	which	is	called	the	number	of	containers	may	be	partially	reserved	by	other	customers	
who	are	not	the	members	in	the	logistics	network	[3].	Thus,	the	available	delivery	capacity	of	a	
carrier	has	multiple	states	and	can	be	represented	by	a	probability	distribution	which	can	be	
obtained	from	the	carrier’s	database	[1,	4‐7].	We	regard	the	commodities	transported	by	the	
logistics	network	as	the	flow.	Thus,	any	logistics	network	can	be	regarded	as	a	stochastic	flow	
delivery	network	(SFDN).	
In	reality,	there	are	some	perishable	commodities,	such	as	meat,	milk,	fruit	and	eggs.	it	is	easy	
to	decay	or	be	spoilt	in	the	course	of	delivery	due	to	time,	collisions,	air	temperature,	natural	
disasters,	traffic	accidents	and	other	factors.	it	is	not	uncommon	for	damage	to	occur	in	various	
network	systems.	Rong	et	al.	presented	a	method	 to	model	 food	quality	degradation	during	
production	and	distribution	planning	[8].	Taking	transport	damage	during	transportation	into	
account,	Keizer	et	al.	focused	on	designing	the	logistics	network	for	perishable	products	with	
heterogeneous	 quality	 decay	 [9].	 In	 the	 context	 of	 transport	 damage,	 the	 intact	 products	
arriving	at	destinations	may	be	cannot	meet	the	market	needs.	Then,	some	researchers	shifted	
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attention	to	the	network	reliability	with	goods	deterioration.	Lin	et	al.	defined	the	reliability	of	
a	distribution	network	with	goods	deterioration	as	the	probability	that	the	network	is	able	to	
meet	 the	 market	 demand	 for	 intact	 commodities	 under	 delivery	 damage	 and	 budget	 limit	
considerations.	Postulate	that	each	minimal	path	(MP)	is	associated	with	a	spoilage	rate,	Lin	et	
al.	 first	 described	 the	 assignment	 strategy	 of	 product	 flow	 on	 each	MP	 so	 that	 the	market	
demand	 for	 intact	 products	 can	 be	 met,	 and	 then	 proposed	 an	 algorithm	 to	 evaluate	 the	
network	reliability	[1].	
In	this	article,	we	also	Take	SFDN	reliability	under	transportation	deterioration	considerations	
into	account,	which	is	defined	as	the	probability	that	the	SFDN	is	able	to	successfully	transport	
the	 required	quantities	 of	 products	 from	 the	 single	 supplier	 to	multiple	 destinations	 under	
transport	damage	consideration.	To	better	 illustrate	 the	relationship	of	MPs,	we	associate	a	
specific	damage	rate	with	each	arc,	instead	of	each	MP.	In	this	case,	the	change	of	damage	rate	
of	 one	 arc	 may	 influence	 damage	 rates	 of	 several	 MPs,	 which	 is	 more	 practical	 in	 the	
transportation	process.	And	a	method	is	proposed	to	evaluate	the	SFDN	reliability	in	the	bases	
of	feasible	flow	patterns	which	are	minimal	capacity	vectors	satisfying	market	demand	under	
transport	damage	consideration.	The	proposed	method	utilizes	MPs	and	market	demands	to	
obtain	feasible	flow	patterns.	Finally,	a	simple	network	is	described	to	illustrate	the	process	of	
the	method	and	illustrate	the	management	implication	of	network	reliability.	

2. Construction	of	the	SFDN	Model	

This	 section	 describes	 the	 relationships	 between	 the	 transportation	 flow,	 transportation	
capacity,	transportation	damage	and	demand,	and	then	an	SFDN	model	 is	developed.	Before	
developing	 the	SFDN	model,	 the	notations	and	assumptions	are	 introduced	 in	 the	 following	
subsection.	

2.1. Notations	and	Assumptions		
All	notations	used	in	this	paper	are	summarized	in	the	following	list.	To	be	worthy	of	attention,	
there	exists	a	contracted	carrier	alone	arc	ai	in	(V,	E)	to	be	responsible	for	freight	delivery,	i	=	
1,	2,	…,	n.	The	available	capacity	of	each	contracted	carrier	is	a	random	variable	noted	by	hij,	and	
j	takes	integer	values	from	1	to	i	according	to	a	given	probability	distribution.	
	

Table	1.	Notation	list	
V:	set	of	nodes.	

E:	set	of	arcs	connecting	nodes.	
(V,	E):	a	stochastic‐flow	distribution	network.	

n:	number	of	arcs.	
ai:	the	ith	route	in	(V,	E),	i	=	1,	2,…,n.	

s:	supplier,	i.e.,	source	node.	
m:	number	of	markets.	

te:	the	eth	market	in	(V,	E),	i.e.,	sink	node,	e=1,	2,	…,	m.	
i:	number	of	states	that	route	ai	owns.	

hij:	The	jth	available	capacity	of	each	contracted	carrier	along	route	ai,	j	=	1,	2,	…,	i.	
W:	the	maximal	capacity	vector	of	(V,	E).	

w:	the	capacity	required	for	each	unit	of	commodity.	
ze:	the	number	of	minimal	path	(MP)	connecting	source	s	and	sink	te,	e=1,	2,…,m.	

MPe,j:	the	MP	connecting	source	s	and	sink	te,	j	=	1,	2,…,ze.	
de:	the	demand	of	market	te.	
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D:	the	market	demand	vector:	(d1,	d2,	…,	dm).	
fe.j:	the	ideal	flow	through	MPe.j,	e=1,	2,…,m,	j	=	1,	2,…,ze.	

F:	the	ideal	flow	vector:
1 21,1 1,2 1, 2,1 2,2 2, ,1 ,2 , ,1 ,2 ,( , ,..., , , ,..., ,..., , ,..., ,..., , ,..., )

e mz z e e e z m m m zf f f f f f f f f f f f .	

pi:	delivery	spoilable	rate	of	arc	ai.	
pe.j:	delivery	spoilable	rate	of	MPe.j,	e=1,	2,…,m,	j	=	1,	2,…,ze.	

P:	The	set	of	delivery	spoilable	rate	of	arc	ai,	P	=	(p1,	p2,	…,	pn).	
oe.j:	Actual	delivered	flow	through	MPe.j.	

I:	The	actual	flow	vector:
1 21,1 1,2 1, 2,1 2,2 2, ,1 ,2 , ,1 ,2 ,( , ,..., , , ,..., ,..., , ,..., ,..., , ,..., )

e mz z e e e z m m m zo o o o o o o o o o o o 	

xi:	Current	available	capacity	of	ai,	i	=	1,	2,…,n	
X:	Current	capacity	vector	of	(V,	E,	W),	X	=	(x1,	x2,..,xn)	

RD,P:	Network	reliability	
MCV:	minimal	carrying	capacity	vector	

(D,	P)‐MCVs:	the	minimal	carrying	capacity	vectors	that	can	satisfy	the	demand	vector	D	
under	the	spoilage	pattern	P.	

:	Set	of	minimal	capacity	vector	feasible	under	(D,	P).	
	.x	to	equal	or	than	larger	is	which	integer	smallest	the	:ۀxڿ
	.x	to	equal	or	than	less	is	which	integer	largest	the	:ۂxہ

	
The	following	assumptions	are	made	in	this	article:	
(1)	All	flows	in	the	network	satisfy	the	flow‐conservation	law,	i.e.,	total	flows	into	and	from	a	
node	(other	than	the	source	and	sink	nodes)	are	all	equal.	
(2)	Flow	in	the	network	is	an	integer	value.	
(3)	 The	 transportation	 capacities	 of	 various	 logistics	 service	 provider	 are	 statistically	
independent.	

2.2. Ideal	Flow	Vector	and	Actual	Flow	Vector		
let	 F=

1 21,1 1,2 1, 2,1 2,2 2, ,1 ,2 , ,1 ,2 ,( , ,..., , , ,..., ,..., , ,..., ,..., , ,..., )
e mz z e e e z m m m zf f f f f f f f f f f f 	be	 an	 ideal	 flow	

vector,	with	fe.j	denoting	the	ideal	flow	(the	number	of	transported	freights	without	considering	
transportation	 damage)	 traveling	 through	MPe.j;	 it	 should	 be	 an	 integer	 value	 according	 to	
assumption	Ⅱ.	All	flows	in	the	network	satisfy	the	flow‐conservation	law,	i.e.,	total	flows	into	
and	from	a	node	(other	than	the	source	and	destination	nodes)	are	all	equal.	The	demand	vector	
is	denoted	by	D	=	(d1,	d2,…,dm),	where	de	is	the	required	units	of	commodity	for	the	market	te.	
Hence,	 any	 ideal	 flow	 vector	 F	 is	 said	 to	 meet	 the	 exact	 demand	 vector	D	 under	 the	 flow	
conservation	principle	if	and	only	if	it	satisfies	the	following	constraint:	

	

.
1

  for e=1,2,...,m.
ez

e j e
j

f d


 																																																												(1)	

Where	 the	 term	 .1

ez

e jj
f

 represents	 the	 total	 amount	 of	 flow	 through	 (V,	E),	 such	 an	F	 not	

taking	 damage	 consideration	 into	 transportation	 process	 yet	 is	 called	 an	 ideal	 flow	 vector.	
However,	 the	 products	may	 be	 damaged	 due	 to	 collisions,	 traffic	 accident,	 natural	 disaster,	
whether,	 time	 during	 delivery.	 Hence	 the	 ideal	 flow	 vector	 may	 un‐satisfy	 the	 market	
requirement.	Generally	speaking,	an	average	ratio	of	the	number	of	damaged	products	to	the	
number	of	total	products	for	a	route	ai	can	be	obtained	by	long‐term	observation.	Such	a	ratio	
denoted	by	pi	is	called	the	damage	rate	of	route	ai.	Why	we	consider	the	delivery	damage	of	
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route	 ai	 instead	 of	 the	 delivery	 damage	 of	 minimal	 path	 MPe.j?	 The	 reason	 is	 that	 when	
consideration	 of	 the	 delivery	 damage	 of	 MPe.j,	 the	 delivery	 damage	 rate	 of	 each	 path	 is	
uncorrelated	and	independent	of	each	other,	but	a	route	generally	connects	more	than	one	path.	
For	example,	in	the	sensitivity	analysis	of	damage	rate,	the	change	of	the	delivery	damage	rate	
of	 one	 route	 may	 affect	 the	 value	 of	 the	 delivery	 damage	 rate	 of	 several	 minimal	 paths.	
Therefore,	the	consideration	of	the	delivery	damage	of	route	ai	enhances	the	correlation	degree	
of	each	MPe.j	and	it	is	closer	to	the	real	life.	In	addition,	the	notation	pe.j	is	defined	as	the	damage	
rate	of	a	specified	MPe.j.	Each	intact	flow	traveling	through	MPe.j	can	be	calculated	by	fe.j	×	(1	–	
pe.j).	The	damage	rate	pe.j	of	a	specified	MPe.j	can	be	derived	from	the	damage	rate	of	route	ai	
according	to	the	following	equation:	
	

pe,j	=	1	–
,

(1 )
i e j

i
a MP

p


 	for	e	=	1,2,…,	λ	and	j	=	1,2,…,	ze.																																	(2)	

	
For	example,	a	network	consisting	of	one	supplier,	one	transfer	center,	and	two	markets	has	
two	MPs:	MP1,1	=	{a1,	a2}	and	MP2,1	=	{a1,	a3}	(refer	to	Fig.	1).	For	the	demand	d1	=	2	and	d2	=	1,	
the	ideal‐flow	vector	is	F	=	(2,	1).	If	the	damage	rate	of	route	a1,	a2,	and	a3	is	p1	=	0.08,	p2	=	0.05,	
and	p3	=	0.06	respectively,	we	can	get	p1,1	=	1	–	(1	–	0.08)	(1	–	0.05)	=	0.126	and	p2,1	=	1	–	(1	–	
0.08)	(1–	0.06)	=	0.1352.	The	number	of	intact	flows	traveling	to	the	market	t1	is	f1,1	×	(1	–	p1,1)	
=	2	×	(1	–	0.126)	=	1.748	<	d1,	the	number	of	intact	flows	traveling	to	the	market	t2	is	f2,1	×	(1	–	
p2,1)	=	1	×	(1	‐	0.1352)	=	0.8648	<	d2.		
In	 order	 to	make	 the	 number	 of	 goods	 delivered	 to	 the	market	 te	meet	 the	 demand	de,	 the	
notation	I	=

1 21,1 1,2 1, 2,1 2,2 2, ,1 ,2 , ,1 ,2 ,( , ,..., , , ,..., ,..., , ,..., ,..., , ,..., )
e mz z e e e z m m m zo o o o o o o o o o o o is	represented	as	

an	actual‐delivered	flow	vector,	where	oe,j	is	the	actual	delivered	flow	which	is	derived	from	the	
ideal	flow	fe,j	via	the	following	equation:	
	

, , ,/(1 )e j e j e jo f p    																																																																											(3)	

	
Following	the	above	example,	o1,1	=	1)/2ڿ	–	ۀ(0.126	=	ۀ2.288ڿ	=	3	and	o2,1	=	1)/1ڿ	–	ۀ(0.1352	=	
	ۀ1.156ڿ =	 2,	 where	 “2.288”	 and	 “1.156”	 signify	 the	 smallest	 values	 that	 satisfy	 the	 market	
demand	based	on	the	 ideal‐flow	vector	F	=	(2,	1)	when	transportation	damage	is	taken	into	
account.	According	to	assumption	Ⅱ,	the	actual‐delivered	flow	must	be	an	integer	value.	since	
we	consider	the	smallest	integer	value	3	which	is	larger	than	or	equal	to	2.288	as	the	actual‐
delivered	flow	of	MP1,1.	If	o1,1	<	2.288,	such	as	2,	the	number	of	intact	goods	delivered	to	the	
market	t1	is	2ہ	×	1)	–	ۂ(0.126	=	ۂ1.748ہ	=	1	and	does	not	satisfy	d1	=	2.	obviously,	each	such	I	is	
the	 smallest	 flow	 vector	 to	 meet	 the	 demand	 vector	 D	 with	 transportation	 damage	
consideration.	
	

	
Fig	1.	A	network	with	a	single	supplier	and	two	markets	
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2.3. Actual	Flow	Vector	and	Delivery	Capacity	Vector		
Let	 X	 =	 (x1,	 x2,…,	 xn)	 be	 a	 delivered	 capacity	 vector,	 where	 xi	 denotes	 the	 current	 delivery	
capacity	of	route	ai	and	takes	an	integer	value	hi1=0,	hi2,…,	or	hii	for	i	=	1,2,…,n.	The	maximum	
delivery‐capacity	vector	of	(V,	E)	is	denoted	by	W	=	(h11,	h22,…,	hnn).	For	convenience,	let	IW	
denote	the	set	of	actual	flow	vectors	feasible	under	W.	The	w	is	the	consumed	delivery	capacity	
per	unit	of	flow.	Hence,	any	actual	flow	vector	I	is	said	to	be	feasible	under	W	if	and	only	if	it	
satisfies	the	following	constraints:	
	

																					
,

,
1 :

 for =1,2,...,
i

i e j

m

e j i
e j a MP

w o h i n
 

 
 

  
  																																														(4)	

	

,
,1 : i e j

m

e je j a MP
w o

 
 
    	is	 the	 consumed	 transportation	 capacity	 of	 the	 total	 flow	 through	 ai.	

constraint	(4)	represents	the	consumed	transportation	capacity	on	route	ai	cannot	exceed	the	
maximal	transportation	capacity	of	ai	for	i	=	1,2,…,n.	
Equally,	any	I	satisfying	the	constraint	(5)	is	said	to	be	feasible	under	X.	
	

.

.
1 :

for =1,2,..., .
i e j

m

e j i
e j a MP

w o x i n
 

 
 

  
  																																														(5)	

	
Constraint	(5)	represents	the	consumed	capacity	on	route	ai	cannot	exceed	the	current	capacity	
state	of	route	ai	and	IX	is	the	set	of	all	actual‐flow	vectors	feasible	under	X.	

2.4. SFDN	Reliability	Evaluation	
SFDN	 reliability	 denoted	 by	RD,P	 is	 defined	 as	 the	 probability	 that	 the	 SFDN	 can	 satisfy	 the	
demand	vector	D	under	the	spoilage	pattern	P	and	can	successfully	transport	de	units	of	goods	
from	the	supplier	s	to	the	market	te	for	e=1,2,…,m.	That	is,	RD,P		Pr{X|X	fulfils	the	requirement	
(D,	P)}.	For	convenience,	let			{X|X	fulfils	(D,	P)}.	Then,	the	SFDN	reliability	RD,P	is	
	

, Pr( ) = Pr( )D P X
R X


   																																																													(6)	

	
where	Pr(X)	=	Pr{x1}		Pr{x2}		…		Pr{xn}	by	assumption	3.	

2.5. Define	(D,	P)‐MCV	to	Calculate	SFDN	Reliability	
one	way	to	obtain	RD,	P	is	to	enumerate	all	X			and	then	sum	up	their	probability.	However,	it	
is	 not	 an	 efficient	way	 and	 it	will	 become	 time‐consuming	 as	 the	 network	 becomes	 larger.	
Instead,	the	study	utilized	the	concept	of	minimal	carrying	capacity	vectors	(MCVs)	to	increase	
the	computational	efficiency	for	the	SFDN	reliability	evaluation.	For	convenience,	let	(D,	P)‐MCV	
denote	such	an	MCV.	Before	defining	the	(D,	P)‐MCV,	the	following	two	definitions	related	to	
the	comparison	between	two	delivery‐capacity	vectors	are	introduced.	
Definition	3:	X		Y:	(x1,	x2,…,xm)		(y1,	y2,…,	ym)	if	and	only	if	xi		yi	for	each	i.	
Definition	4:	X	<	Y:	(x1,	x2,…,xm)		(y1,	y2,…,	ym)	if	and	only	if	X		Y	and	xi		yi	for	at	least	one	i.	
Definition	5:	Any	MCV	in		is	named	a	(D,	P)‐MCV.	That	is,	if	X	is	a	(D,	P)‐MCV,	then	Y			for	
any	delivery‐capacity	vector	Y	with	Y	<	X.	
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Suppose	 the	 total	 b	 (D,	 P)‐MCVs	 are	 X1,	 X2,	 …,	 Xb.	 Then,	 	 can	 be	 represented	 as	

1{ { | }}b
i iX X X  .		

Thus	 the	SFDN	reliability	 can	be	rewritten	as	 , 1Pr( ) Pr{ { | }}b
D P i iX

R X X X X
    .	This	

probability	can	be	calculated	by	the	inclusion‐exclusion	principle	[10]	or	the	recursive	sum	of	
disjoint	 products	 (RSDP)	 [11].	 Because	 the	 RSDP	 has	 better	 computational	 efficiency	 than	
others,	 especially	 for	 larger	 networks	 [12],	 this	 article	 adopts	 the	 RSDP	 to	 calculate	

1Pr{ { | }}b
i iX X X  .	In	order	to	generate	all	(D,	P)‐MCVs	to	calculate	RD,P,	the	features	of	(D,	

P)‐MCV	are	described	as	follows.	

2.6. Generate	All	(D,	P)‐MCVs	
In	this	subsection,	we	try	to	generate	all	(D,	P)‐MCVs.	For	each	actual	flow	vector	I		IW,	we	
generate	the	corresponding	delivery‐capacity	vector	X	through	the	following	equation:	
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Such	a	transformation	guarantees	that	I		IX	and	the	X	fulfills	(D,	P).	In	particular,	I		IY	for	any	
Y	<	X.	That	is,	the	transformed	X	satisfies	the	demand	d	with	transportation	damage	P.	Thus,	
any	X	transformed	via	equation	(7)	is	treated	as	a	(D,	P)‐MCV	candidate.	

2.7. The	Algorithm	for	SFDN	Reliability	Evaluation	
Based	 on	 the	 addressed	 SFDN	 model,	 an	 algorithm	 is	 proposed	 to	 evaluate	 the	 network	
reliability	as	follows.	
Step	1.	Find	all	ideal‐flow	vector	F	satisfying	the	following	demand	constraint:	

,
1

for e=1,2,...,m.
ez

e j e
j

f d


 																																																												(8)	

If	there	is	no	F	satisfying	the	constraint,	then	RD,P	=	0	and	quit	the	algorithm.	
Step	2.	Transform	each	ideal‐flow	vector	F	obtained	from	Step	1	into	actual‐flow	vector	I	via	
	

pe,j	=	1	–
,

(1 )
i e j

i
a MP

p


 	for	e	=	1,2,…,	λ	and	j	=	1,2,…,	ze.																																					(9)	

, , ,/(1 )e j e j e jo f p    																																																																					(10)	

	
Step	3.	Utilize	the	following	constraints	to	check	whether	each	I	from	Step	2	is	a	feasible	actual‐
flow	vector	under	W	to	satisfy	the	budget	B	or	not.	
	

,

,
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 
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If	there	is	no	I	satisfying	the	constraints,	then	RD,P	=	0	and	quit	the	algorithm.	
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Step	4.	Transform	each	feasible	actual‐delivered	flow	vector	I	into	X	via	the	following	equation:	

 

if

if > , 2,3,..., 1, 2,...,

i e, j

i e, j

m

i1 i1 e, j
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i
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 
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Each	X	is	a	(D,	P)‐MCV	candidate.	
Step	5.	Adopt	comparison	algorithm	to	check	whether	X	driven	by	Step	4	are	(D,	P)‐MCVs.	
Step	6.	Utilize	the	RSDP	method	to	compute	RD,R.	

3. A	Simple	Example	to	Illustrate	the	Solution	Procedure	

A	 simple	 distribution	 network	 including	 a	 single	 supplier,	 two	 distribution	 centers,	 two	
markets,	and	six	arcs	(see	figure	2)	is	utilized	to	show	the	SFDN	reliability	evaluation	algorithm.	
The	data	related	to	available	capacity	and	probability	distribution	is	given	in	Table	2.	There	are	
four	MPs:	MP1,1	=	{a1,	a3}	and	MP1,2	=	{a2,	a5}	connecting	s	and	t1,	MP2,1	=	{a1,	a4}	and	MP2,2	=	{a2,	
a6}	connecting	s	and	t2.	Suppose	the	damage	rates	are	p1=	0.06,	p2=	0.1,	p3=	0.02,	p4=	0.03,	p5=	
0.02,	p6=	0.01.	The	required	capacity	per	unit	of	flow	is	0.6,	i.e.	w=0.6.	For	D	=	(3,	2),	how	to	
acquire	 all	 ((3,	 2),	P)‐MCVs	 and	 how	 to	 evaluate	 the	 SFDN	 reliability	 are	 illustrated	 in	 the	
following	steps.	
	

	
Fig	2.	A	simple	distribution	networks	

	
Table	2.	The	logistics	carrier’	capacity	data	of	each	route	

	
available	carrying	capacity	

hi1=0																													hi2=1																													hi3=2																									hi4=3																														hi5=4	
Route	(ai)																																																																					Probability	

a1	
a2	
a3	
a4	
a5	
a6	

0.010a	
0.010	
0.010	
0.010	
0.005	
0.010	

0.020	
0.050	
0.010	
0.010	
0.005	
0.020	

0.050	
0.050	
0.050	
0.980	
0.020	
0.970	

0.1000	
0.080	
0.930	
0.000	
0.970	
0.000	

0.820	
0.810	
0.000b	
0.000	
0.000	
0.000	

a	the	probability	means	Pr(h11)	=	Pr(x1	=	h11)	=	Pr(x1	=	0)	=	0.010.	
b	the	logistics	carrier	does	not	provide	the	capacity.	
	
Step	1.	Find	all	F	satisfying	the	following	constraint:	
	

f1.1	+	f1.2	=	3	
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f2.1	+	f2.2	=	2	
This	step	generates	12	ideal	flow	vectors.	For	convenience,	we	list	them	in	the	first	column	of	
Table	3.	
Step	2.	Transform	each	F	driven	by	Step	1	into	I.	For	example,	convert	F1	=	(0,	3,	0,	2)	via		
	

P1.1	=	1	‐	(1	‐	0.06)		(1	‐	0.02)	=	0.0788,	
P1.2	=	1	‐	(1	‐	0.1)		(1	‐	0.02)	=	0.1180,	
P2.1	=	1	‐	(1	‐	0.06)		(1	‐	0.03)	=	0.0882,	
P2.2	=	1	‐	(1	‐	0.1)		(1	‐	0.01)	=	0.1090.	

o1.1	=	0	/	(1	‐	0.0788)	=	0,	
o1.2	=	3	/	(1	‐	0.1180)	=	4,	
o2.1	=	0	/	(1	‐	0.0882)	=	0,	
o2.2	=	2	/	(1	‐	0.1090)	=	3,	

	
to	obtain	I1	=	(0,	4,	0,	3).	All	actual	delivered	flow	vectors	are	given	in	the	second	column	of	
Table	3.	
Step	3.	Employ	the	following	constraints	to	check	whether	each	I	from	Step	2	satisfies	W	=	(4,	
4,	3,	2,	3,	2)	or	not.	

1		0.6		o1.1	+	0.6		o2.1		4,	
1		0.6		o1.2	+	0.6		o2.2		4,	

0		0.6		o1.1		3,	
0		0.6		o2.1		2,	
0		0.6		o1.2		3,	
0		0.6		o2.2		2,	

	
In	total,	we	obtain	10	feasible	actual	delivered	flow	vectors	and	list	them	in	the	third	column	of	
Table	3.	
Step	4.	Convert	each	feasible	actual	delivered	flow	vector	I	into	X	via	
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Then,	we	obtain	9	((3,	2),	P)‐MCV	candidates,	X1,	X2,	X3,	X4,	X5,	X6,	X7,	X8	and	X9,	listed	in	the	fourth	
column	of	Table	3.	
Step	5.	The	comparison	algorithm	generates	4	((3,	2),	P)‐MCVs,	X2,	X5,	X6	and	X8.	
Step	6.	 The	 SFDN	 reliability ((3,2), ) 2,5 6 8Pr{ { | }} 0.90582P i iR X X X   ，， is	 calculated	 through	

the	RSDP.	That	is,	the	probability	of	the	SFDN	to	successfully	transport	D	=	(3,	2)	to	the	markets	
subject	to	P	=	(0.06,	0.1,	0.02,	0.03,	0.02,	0.01)	is	0.90582.	

	
Table	3.	The	((3,	2),	P)‐MCVs	

Step	1	

F1	=	(0,	3,	0,	2)	

F2	=	(0,	3,	1,	1)	

F3	=	(0,	3,	2,	0)	

F4	=	(1,	2,	0,	2)	

F5	=	(1,	2,	1,	1)	

F6	=	(1,	2,	2,	0)	

F7	=	(2,	1,	0,	2)	

F8	=	(2,	1,	1,	1)	

F9	=	(2,	1,	2,	0)	

F10	=	(3,	0,	0,	2)	

F11	=	(3,	0,	1,	1)	

F12	=	(3,	0,	2,	0)	

Step	2	

I1	=	(0,	4,	0,	3)	

I2	=	(0,	4,	2,	2)	

I3	=	(0,	4,	3,	0)	

I4	=	(2,	3,	0,	3)	

I5	=	(2,	3,	2,	2)	

I6	=	(2,	3,	3,	0)	

I7	=	(3,	2,	0,	3)	

I8	=	(3,	2,	2,	2)	

I9	=	(3,	2,	3,	0)	

I10	=	(4,	0,	0,	3)	

I11	=	(4,	0,	2,	2)	

I12	=	(4,	0,	3,	0)	

Step	3	

Unsatisfy	W	=	(4,	4,	3,	2,	3,	2)	

I2	is	feasible	

I3	is	feasible	

I4	is	feasible	

I5	is	feasible	

I6	is	feasible	

I7	is	feasible	

I8	is	feasible	

I9	is	feasible	

I10	is	feasible	

I11	is	feasible	

Unsatisfy	W	=	(4,	4,	3,	2,	3,	2)	

Step	4	

‐	

X1	=	(2,	4,	0,	2,	3,	2)	

X2	=	(2,	3,	0,	2,	3,	0)	

X3=	(2,	4,	2,	0,	2,	2)	

X4	=	(3,	3,	2,	2,	2,	2)	

X5	=	(3,	2,	2,	2,	2,	0)	

X6	=	(2,	3,	2,	0,	2,	2)	

X4	=	(3,	3,	2,	2,	2,	2)	

X7	=	(4,	2,	2,	2,	2,	0)	

X8	=	(3,	2,	3,	0,	0,	2)	

X9	=	(4,	2,	3,	2,	0,	2)	

‐	

Step	5	

‐	

No,	X1	>	X2	

Yes	

No,	X3	>	X6

No,	X3	>	X5	

Yes	

Yes	

No,	X4	>	X5	

No,	X7	>	X5	

Yes	

No,	X9	>	X8	

‐	

4. Summary	

Market	demand	may	be	unmet	when	the	deterioration	of	generally	perishable	commodities	is	
taken	 into	 account.	 Therefore,	 this	 paper	 constructs	 a	 SFDN	 model	 with	 deterioration	
consideration	 to	 deal	 with	 this	 situation	 that	 the	 commodities	 may	 be	 damaged	 during	
transportation.	 In	 the	SFDN,	 each	 route	has	 several	 available	 capacities	with	 corresponding	
probabilities	and	each	route	has	a	damage	rate.	Based	on	MPs,	we	reference	a	generally	SFDN	
evaluation	algorithm	to	measure	the	SFDN	reliability	which	represents	the	probability	of	the	
SFDN	to	successfully	transport	commodities	from	single	supplier	to	multiple	markets	to	meet	
the	market	demand	subject	to	a	specific	level	of	perishability.	The	algorithm	can	be	divided	into	
two	phases:	the	first	phase	is	to	obtain	all	(D,	P)‐MCVs	and	the	second	phase	is	using	the	RSDP	
approach	to	calculate	the	SFDN	reliability,	i.e.,	the	probability	of	the	union	set	of	the	(D,	P)‐MCVs.	
Through	a	simple	distribution	network,	this	study	indicates	the	applicability	of	the	algorithm.	
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