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Abstract	
The	 cold	 chain	 logistics	 industry	 is	 faced	with	high	 costs	and	high	 carbon	emissions.	
Integrating	resource	sharing	(RS)	into	the	optimization	of	multi‐depot	vehicle	routing	
problem	 can	 greatly	 reduce	 logistics	 operation	 costs	 and	 carbon	 emissions	 by	
reconfiguring	 logistics	 networks.	 In	 this	 paper,	 a	Green	 Cold	 Chain	 Logistics	Vehicle	
Routing	Problem	with	Resource	Sharing	 (GCCLVRP‐RS)	model	 is	developed,	 in	which	
cold	chain	 logistics	companies	cooperate	with	each	other	 through	a	resource	sharing	
strategy	to	jointly	provide	cold	chain	goods	to	customers.	In	order	to	construct	a	more	
comprehensive	 cost	 function,	 the	 carbon	 tax	 policy	 is	 considered	 and	 the	 carbon	
emission	cost	is	calculated	with	the	carbon	tax	price.	In	this	paper,	a	two‐stage	hybrid	
algorithm	consisting	of	k‐means	clustering	algorithm	and	simulated	annealing	improved	
genetic	algorithm	 (SAIGA)	 is	designed.	The	 first	 stage	uses	 the	k‐means	algorithm	 to	
reassign	 customers	 to	 distribution	 centers	 based	 on	 the	 spatial‐temporal	 distance	
between	customers,	thus	reducing	the	computational	complexity	of	solving	GCCLVRP‐RS.	
In	 the	second	stage,	SAIGA	 is	used	 to	optimize	 the	distribution	path.	The	comparison	
experiments	show	that	resource	sharing	is	an	effective	way	to	reduce	the	total	cost	and	
carbon	 emission	 compared	 with	 single	 distribution	 and	 joint	 distribution.	 Finally,	
numerical	experiments	are	conducted	using	actual	data	in	order	to	discuss	the	changes	
of	distribution	routes	with	different	carbon	emissions	under	different	carbon	taxes	and	
their	 effects	 on	 the	 total	 distribution	 costs.	 Through	 the	 experimental	 analysis,	 the	
critical	carbon	 tax	values	of	carbon	emission	and	distribution	cost	are	obtained.	The	
results	of	this	paper	provide	effective	suggestions	for	the	government	and	enterprises,	
and	 cold	 chain	 logistics	 companies	 can	 improve	 delivery	 efficiency,	 reduce	 business	
costs	 and	 improve	 competitiveness	 through	 corporate	 cooperation.	 In	 addition,	 the	
government	should	advocate	corporate	cooperation	and	formulate	an	effective	carbon	
tax	policy	to	achieve	a	balance	of	economic	and	environmental	benefits.	
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1. Introduction	

Global	warming	 is	 becoming	more	 and	more	 serious,	 and	 the	 hot	 issue	 of	 reducing	 carbon	
emissions	has	attracted	global	attention	[1].	At	the	United	Nations	Climate	Change	Conference	
in	Copenhagen,	China	pledged	to	reduce	CO2	emissions	by	40%	by	2020.	Logistics,	especially	
transportation,	is	considered	one	of	the	major	contributors	to	these	emissions,	accounting	for	
about	25%	of	global	carbon	emissions[2,3,4].	Cold	chain	 logistics	 is	an	extremely	 important	
branch	of	transportation.	Due	to	the	perishable	nature	of	cold	chain	products,	transportation	
vehicles	 need	 to	 use	 refrigeration	 equipment	 to	 maintain	 a	 proper	 temperature	 during	
transportation,	which	will	 consume	more	 fuel	 [5].Since	 2013,	 the	market	 size	 of	 cold	 chain	
logistics	 in	China	has	been	 expanding	 rapidly,	 growing	 at	 15%	per	 year,	with	 an	 estimated	
revenue	of	USD	80	billion	in	2024	[6].	Although	the	cold	chain	logistics	market	is	booming,	cold	



Scientific	Journal	of	Economics	and	Management	Research																																																																							Volume	4	Issue	2,	2022	

	ISSN:	2688‐9323																																																																																																																										

63	

chain	 logistics	 companies	 are	 usually	 small	 in	 size	 and	 numerous	 in	 number.	 Cooperation	
among	 them	 is	 quite	 limited,	 which	 leads	 to	 high	 costs	 and	 high	 carbon	 emissions	 during	
transportation	 [7].	 Therefore,	 reducing	 total	 transportation	 costs	 and	 reducing	 carbon	
emissions	is	a	priority	for	the	entire	cold	chain	logistics	industry.	
The	vehicle	routing	problem	(VRP)	is	the	most	widely	used	model	in	route	planning	[8].	The	
goal	of	VRP	is	to	reduce	transportation	costs	and	transportation	distances	by	optimizing	routes.	
Cold	chain	 logistics	 is	a	special	 logistics	model	 in	which	distribution	vehicles	equipped	with	
refrigeration	equipment	keep	products	at	low	temperatures	and	deliver	them	to	customers	on	
time	[9,10].	During	transportation,	cold	chain	logistics	consumes	more	fuel	to	keep	goods	fresh	
due	to	the	perishable	nature	of	cold	chain	products,	damage	costs	and	refrigeration	costs	are	
incurred	 in	 cold	 chain	 logistics	 [11].	 Under	 the	 requirement	 of	 green	 development,	 carbon	
emission	becomes	another	important	factor	affecting	the	delivery	path	in	the	vehicle	routing	
issue	[12].	The	fuel	consumption	and	carbon	emissions	of	vehicles	in	cold	chain	logistics	are	
higher	than	in	normal	logistics,	causing	more	damage	to	the	environment	[13].	Hence,	for	cold	
chain	logistics,	it	is	not	only	necessary	to	reduce	the	total	distribution	cost,	but	also	to	reduce	
fuel	consumption,	 refrigeration	energy	consumption,	and	carbon	emission	 in	distribution	 to	
achieve	green	distribution.	This	study	provides	comprehensive	coverage	of	all	relevant	costs	in	
the	cold	chain	logistics	delivery	path,	including	fixed	costs,	transportation	costs,	damage	costs,	
refrigeration	costs,	time	penalty	costs,	and	carbon	costs.	
Previous	research	on	cold	chain	path	optimization	has	focused	on	single	distribution	for	large	
companies,	 ignoring	 the	 synchronization	 between	 similar	 businesses.	 With	 the	 rapid	
development	of	third‐party	logistics,	the	independent	distribution	mode	of	single	distribution	
center	 of	 cold	 chain	 logistics	 gradually	 highlights	 the	 problems	 of	 high	 transportation	 cost,	
insufficient	 capacity	 and	 low	 service	 level,	 and	 the	 integration	 and	 sharing	 of	 distribution	
resources	is	the	main	trend	of	current	cold	chain	logistics	distribution.	Distribution	model	with	
resource	sharing	supports	the	sharing	of	customer	information	and	transportation	resources,	
improves	resource	allocation	among	logistics	facilities,	and	optimizes	logistics	networks	[14].	
Through	the	sharing	of	transportation	resources	and	transportation	equipment,	distribution	
costs	and	carbon	emissions	can	be	effectively	reduced	[15].	The	neglect	of	resource	sharing	
makes	the	distribution	path	optimization	of	the	whole	cold	chain	logistics	industry	imperfect.	
The	main	contribution	of	this	paper	is	a	comprehensive	consideration	of	the	costs	associated	
with	 cold	 chain	 logistics	 and	 a	 Green	 Cold	 Chain	 Logistics	 Vehicle	 Routing	 Problem	 with	
Resource	 Sharing	 (GCCLVRP‐RS)	 model	 has	 been	 proposed.	 Most	 previous	 scholars	 have	
studied	 the	 single	distribution	of	 cold	 chain	 companies,	 and	 fewer	 scholars	have	 conducted	
research	on	the	integration	of	cold	chain	logistics	resources.	Another	contribution	of	this	paper	
is	 the	 design	 of	 a	 two‐stage	 algorithm	 based	 on	 customer	 clustering	 and	 vehicle	 routing	
optimization	 to	 solve	 the	 GCCLVRP‐RS	 problem.	 The	 first	 stage	 uses	 a	 k‐means	 clustering	
algorithm	to	integrate	customers	and	resources.	The	second	stage	uses	a	simulated	annealing	
improved	 genetic	 algorithm	 to	 optimize	 vehicle	 routes,	 which	 is	 one	 of	 the	 most	 efficient	
algorithms	for	solving	large	NP‐Hard	problems.	
The	 rest	 of	 this	 article	 is	 structured	 as	 follows.	 Section	 2	 introduces	 a	 literature	 review	 of	
related	work.	Section	3	introduces	the	model	of	this	study.	Section	4	describes	the	two‐stage	
algorithm,	and	Section	5	introduces	the	algorithm	and	case	experiments.	Section	6	emphasizes	
the	impact	of	discussion	and	management.	Finally,	Section	7	concludes	the	article.	

2. Review	of	the	Literature	

Solving	 the	 vehicle	 routing	 problem	 can	 achieve	 rational	 distribution	 and	 thus	 reduce	
distribution	costs	and	carbon	emissions	costs.	In	this	paper,	we	will	review	the	literature	from	
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three	 aspects:	 cold	 chain	 logistics	 research,	 green	 vehicle	 routing	 problem	 research	 and	
resource	sharing.	

2.1. Research	on	Cold	Chain	Logistics	
With	 the	 rapid	development	of	 cold	 chain	 logistics,	 scholars	have	been	 researching	on	 cold	
chain	 logistics	 distribution.	 At	 present,	 the	 optimization	 of	 cold	 chain	 logistics	 distribution	
network	 is	 mainly	 based	 on	 the	 modeling	 and	 solution	 of	 practical	 problems.	 In	 terms	 of	
algorithms,	the	main	methods	are	particle	swarm	algorithm,	genetic	algorithm,	neighborhood	
search	algorithm,	and	so	on	[16,17,18,19].	Combinatorial	algorithms	are	also	innovative	ideas	
[20].	
In	 terms	 of	 costing,	 products	 in	 cold	 chain	 logistics	 are	 perishable	 and	 require	 the	 use	 of	
refrigeration	 equipment,	 which	 incurs	 loss	 costs	 and	 refrigeration	 costs.	 Zhang	 and	 Chen	
developed	a	VRP	model	 to	 find	 the	most	economical	delivery	path	 for	 frozen	products	 [21].	
However,	 the	 proposed	model	 does	 not	 take	 into	 account	 the	 cost	 of	 damage	 to	 the	 goods.	
Osvald	 et	 al.	 developed	 a	 vehicle	 path	 planning	 model	 for	 perishable	 fresh	 food	 logistics	
delivery	that	considers	the	loss	cost	but	ignores	the	refrigeration	cost	[22].Solomon	was	the	
first	 to	 study	 VRP	 with	 time	 window	 constraints	 [23].	 Considering	 the	 randomness	 of	
perishable	 fresh	 food,	Hsu	et	al.	 first	proposed	a	 fresh	 food	 logistics	VRP	model	with	a	 time	
window	[24].	Later,	 in	the	research	of	scholars,	cold	chain	logistics	VRP	problems	with	time	
windows	were	divided	into	two	categories:	hard	time	windows	and	soft	time	windows	[25,26].	
In	addition,	Ren	improved	and	proposed	a	hybrid	time	window	setting	with	a	hard	time	window	
to	meet	the	customer's	time	constraints	and	a	soft	time	window	to	reflect	different	customer	
satisfaction	[27].	If	the	service	occurs	before	or	after	the	ideal	time,	customer	satisfaction	will	
decrease	and	penalties	will	be	applied	to	reflect	the	level	of	customer	dissatisfaction.	Previous	
studies	were	not	comprehensive	in	terms	of	cost	components.	In	this	study,	cargo	damage	cost,	
refrigeration	cost	and	time	penalty	cost	will	be	considered.	

2.2. Research	on	Green	Vehicle	Routing	Problem	
Due	to	the	growing	concern	about	climate	change,	low‐carbon	and	green	economies	have	also	
been	 gradually	 introduced	 into	 vehicle	 path	 planning.	 The	 GVRP	model	was	 introduced	 by	
Erdoğan	and	Miller‐Hooks	[28],	and	GVRP	usually	considers	the	emissions	of	carbon	dioxide.	
In	order	to	reduce	fuel	consumption	and	carbon	emissions,	numerous	scholars	have	conducted	
studies.	Kuo	et	al.	proposed	a	model	to	optimize	VRP	for	green	transportation	with	the	goal	of	
minimizing	 fuel	 consumption	 [29].	 Koç	 et	 al.	 achieved	 reduction	 in	 fuel	 consumption	 and	
distribution	carbon	emissions	by	using	multiple	types	of	vehicles	for	distribution	planning	[30].	
Liao's	study	demonstrated	that	by	considering	carbon	emission	factors	in	the	GVRP	model,	CO2	
emissions	can	be	significantly	reduced	[31].	Niu	et	al.	proposed	a	green	VRP	with	a	time	window	
that	includes	carbon	emissions	to	reduce	the	negative	impact	on	the	environment	[32].	Kwon	
et	 al.	 focused	 on	 carbon	 emissions	 in	 vehicle	 distribution	 and	 demonstrated	 that	 carbon	
emissions	 can	 be	 reduced	 without	 increasing	 the	 total	 cost	 [33].	 Although	 previous	 GVRP	
studies	have	examined	carbon	emissions	to	some	extent,	no	literature	has	fully	explored	the	
impact	of	carbon	tax	mechanisms	in	cold	chain	logistics.	When	optimizing	distribution	routes,	
the	cost	of	distribution	cannot	be	ignored	by	only	considering	carbon	emissions.	Therefore,	this	
paper	will	consider	the	carbon	tax	mechanism	and	consider	the	cost	of	carbon	emissions	as	one	
of	the	costs.	

2.3. Research	on	Resource	Sharing	
Currently,	most	of	the	cold	chain	logistics	companies	have	been	distributing	independently,	and	
a	 large	 number	 of	 studies	 have	 focused	 on	 the	 single	 distribution	 model	 [34,35].	 Single	
distribution	ignores	the	cooperation	between	similar	companies,	resulting	 in	 low	vehicle	 fill	
rates,	 large	 number	 of	 rented	 vehicles,	 and	 high	 distribution	 costs.	 These	 disadvantages	
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severely	limit	the	development	of	the	cold	chain	logistics	industry.	Resource	sharing	(RS)	is	a	
strategy	 that	 can	 be	 used	 to	 reconfigure	 logistics	 networks,	 which	 can	 significantly	 reduce	
logistics	 operating	 costs	 and	 required	 transportation	 resources	 [36].	 Therefore,	 resource	
sharing	is	a	new	option	for	current	cold	chain	logistics	companies	to	consider.	
Neghabadi,	PD	applied	the	resource	sharing	strategy	in	urban	logistics	and	the	results	showed	
that	the	resource	sharing	improved	the	efficiency	of	logistics	[37].	Quintero‐Araujo	studied	the	
impact	 of	 resource	 sharing	 on	 logistics	 site	 selection,	 and	 the	 results	 showed	 that	 cost	
optimization	 and	 environmental	 protection	 have	 significant	 advantages	 under	 resource	
sharing	[38].	Xu	et	al.	studied	the	task	resource	allocation	problem	in	shared	logistics	networks,	
constructed	 a	 task	 resource	 allocation	model	 considering	multi‐stage	 resource	 sharing,	 and	
designed	 a	 multi‐objective	 intelligent	 bee	 colony	 algorithm	 to	 solve	 the	 model	 [39].	 Fan	
proposed	 a	multi‐center	 joint	 distribution	model,	 which	 can	 effectively	 reduce	 distribution	
costs	compared	with	individual	distribution	[40].	However,	carbon	emissions	during	vehicle	
operation	were	ignored	during	model	construction.	Wang	integrates	resource	sharing	into	the	
optimization	of	multi‐location	pickup	and	delivery	problems	to	significantly	reduce	 logistics	
operating	costs	and	required	transportation	resources	by	reconfiguring	the	logistics	network	
[36].	 Although	 previous	 studies	 have	 demonstrated	 the	 advantages	 of	 resource	 sharing	
strategies,	 less	 research	 has	 been	 conducted	 on	 resource	 sharing	 in	 cold	 chain	 logistics.	
Therefore,	 this	 question	 investigates	 the	 total	 cost	 and	 carbon	 emission	 in	 the	 cold	 chain	
logistics	vehicle	path	problem	based	on	resource	sharing.	
The	Green	Cold	Chain	Logistics	Vehicle	Routing	Problem	based	on	Resource	Sharing	(GCCLVRP‐
RS)	model	 in	this	study	takes	 into	account	cargo	damage	cost,	refrigeration	cost	and	carbon	
emission	cost,	which	is	more	comprehensive	and	can	better	cope	with	cold	chain	logistics.	The	
comparison	between	the	factors	considered	in	the	RS	model	and	the	factors	considered	in	the	
relevant	literature	is	shown	in	Table	1,	indicating	that	the	GCCLVRP‐RS	model	is	comprehensive	
and	close	to	practical	applications.	
	

Table	1.	Comparison	of	the	factors	considered	in	the	models	of	this	paper	and	relevant	
literature	

Studies	 Product	
Damage	

Refrigeration	
cost	

Time	
penalty	

Carbon	
Emission	

Resource	
Sharing	

Hsu[24]	 	 	 √	 	 	

Osvald[22]	 √	 	 √	 	 	

Zhang	and	
Chen[21]	 √	 √	 √	 	 	

Ren[27]	 √	 √	 √	 √	 	

Niu[32]	 	 	 	 √	 	

Wang[34]	 	 √	 √	 √	 	

Fan[40]	 √	 	 √	 	 √	
This	Study	 √	 √	 √	 √	 √	

3. Model	Formulation	

3.1. Problem	Description	
The	cold	chain	 logistics	distribution	model	studied	 in	 this	paper	 is	 to	distribute	goods	after	
integrating	 the	 cold	 chain	 logistics	 distribution	 center	 and	 related	 equipment	 resources	 of	
several	 enterprises,	 the	demand	point	only	accepts	 the	 service	operation	of	 the	vehicle,	 the	
demand	point	has	a	time	window	limit,	and	the	service	beyond	the	customer's	time	window	
will	incur	penalty	costs.	The	vehicle	returns	to	the	nearest	distribution	center	after	completing	
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the	distribution	task.	The	vehicle	distribution	process	will	generate	fixed	cost,	transportation	
cost	 and	 time	 penalty	 cost.	 Due	 to	 the	 perishability	 of	 cold	 chain	 products,	 damage	 cost,	
refrigeration	 cost	 and	 carbon	 emission	 cost	 will	 be	 generated	 in	 the	 distribution	 process.	
According	to	the	number	of	distribution	centers	and	different	information	of	demand	points,	
there	may	be	various	distribution	schemes.	Figure	1	shows	the	distribution	path	of	the	single	
distribution	mode	of	the	cold	chain	logistics	enterprise	vehicles.	Figure	2	shows	the	possible	
distribution	paths	of	vehicles	in	the	resource	sharing	mode	of	cold	chain	logistics	enterprises.	

 
Figure	1.	Cold	chain	logistics	single	distribution	mode	

	

 
Figure	2.	Cold	chain	logistics	resources	sharing	distribution	model	
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The	Green	Cold	Chain	Logistics	Vehicle	Routing	Problem	with	Resource	Sharing	(GCCLVRP‐RS)	
studied	in	this	paper	can	be	described	as	follows:	M	distribution	centers	and	N	demand	points	
exist.	 The	 distance	 between	 each	 distribution	 center	 and	 demand	 point	 and	 the	 distance	
between	 each	 demand	 point	 are	 known.	 A	 refrigerated	 truck	 starts	 its	 service	 from	 one	
distribution	 center	 and	 can	 return	 to	 the	 nearest	 distribution	 center	 after	 completing	 its	
distribution	 service.	 The	 loading	 capacity	 of	 the	 refrigerated	 truck	 does	 not	 exceed	 the	
maximum	 load	 capacity	 of	 the	 vehicle	 type.	 In	 addition,	 there	 is	 a	 time	 limit	 for	 cold	 chain	
products	 to	keep	 fresh,	and	the	 transportation	process	will	 lead	 to	quality	degradation.	The	
demand	point	has	a	time	window	constraint	 in	accepting	the	delivery	service,	and	failure	to	
reach	or	exceed	 the	service	range	of	 the	delivery	 time	window	will	directly	affect	customer	
satisfaction.	Refrigerated	trucks	will	incur	carbon	emissions	and	carbon	tax	costs	during	vehicle	
driving,	 loading	 and	 unloading.	 Based	 on	 the	 above	 analysis,	 this	 paper	 constructs	 an	
optimization	model	targeting	the	sum	of	fixed	cost,	transportation	cost,	time	penalty	cost,	cargo	
damage	cost,	refrigeration	cost	and	carbon	emissions	cost.	Minimize	the	number	of	refrigerated	
vehicles	 and	 the	 total	 driving	 distance	 of	 vehicles	 required	 for	 delivery	 services,	 thereby	
increasing	the	utilization	rate	of	refrigerated	vehicles,	reducing	the	damage	of	fresh	goods	and	
carbon	emissions.	

3.2. Model	Assumptions	
The	model	assumes	as	follows:	
1.	The	enterprise	has	the	relevant	information	of	all	customer	points,	and	each	customer	point	
can	only	receive	the	service	once.	
2.	Multiple	 distribution	 centers	 exist	 at	 the	 same	 time	 from	 cold	 chain	 logistics	 enterprises	
participating	 in	 resource	sharing,	and	 the	service	capacity	of	 the	distribution	centers	meets	
customer	demand	without	shortage.	The	vehicles	used	by	the	distribution	centers	are	of	the	
same	type.	
3.	During	the	loading	and	unloading	process,	the	doors	of	the	cold	chain	vehicles	are	opened,	
the	 refrigeration	 equipment	 consumes	more	 energy,	 and	 the	damage	 rate	 of	 the	 cold	 chain	
products	during	the	loading	and	unloading	process	is	the	same	as	during	the	transportation	
process.	
4.	All	vehicles	leave	the	distribution	center	at	the	same	time	and	finally	return	to	the	nearest	
distribution	 center,	 without	 returning	 to	 the	 distribution	 center	 for	 replenishment	 in	 the	
middle.	
5.	All	vehicles	travel	at	a	uniform	speed	and	are	not	allowed	to	be	overloaded.	

3.3. Symbols	and	Parameters	
See	Table	2.	

3.4. Model	Development	
3.4.1. Objective	Function	Analysis	of	Model	
(1) Fixed	cost	
The	fixed	cost	of	vehicles	refers	to	the	depreciation,	and	rent	of	 the	vehicles	 involved	in	the	
distribution	tasks,	which	will	not	change	because	of	the	change	in	the	number	of	customers	and	
distribution	distance.	The	fixed	costs	are	calculated	as	follows.	
	

ଵܥ ൌ .ܭ 	௙                                  (1)ܥ
	
Where	C୤	denotes	the	fixed	cost	of	vehicles	and	K	denotes	the	quantity	of	vehicles	used.	
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Table	2.	Description	of	symbols	
Symbols	 Description	

m	 Number	of	distribution	centers	(1,2,… ,m)	
n	 Number	of	customers	(m ൅ 1,m ൅ 2,… ,m ൅ n)	
K	 Vehicle	quantity	
i, j	 Index	of	nodes	(i, j ൌ 1,2, … ,m,m ൅ 1,m ൅ 2,… ,m ൅ n)	
k	 Index	of	vehicles	(k ൌ 1,2, … , K)	
d୧୨	 Distance	between	nodes	i	and	j	

t୧୨	 Time	of	vehicle	from	node	i	to	j	

g୧	 Demand	for	customer	point	i	
S୨	 Service	time	of	customer	j	

C୤	 Fixed	cost	of	each	vehicle	
C୲	 Transportation	cost	of	per	unit	distance	
C୮	 Cold	chain	products′price	per	unit	

C୰	 Refrigeration	consumption	cost	per	unit	
Cୣ	 Punishment	cost	due	to	the	early	arrival	
C୪	 Punishment	cost	due	to	the	late	arrival	
Cୡ	 Carbon	price	
ε	 The	deterioration	rate	of	the	product	freshness	during	transportation	
θ	 Sensitivity	factor	for	cold	chain	products	
αଵ	 The	fuel	consumption	of	refrigeration	equipment	per	unit	time	during	transportation	
αଶ	 The	fuel	consumption	of	refrigeration	equipment	per	unit	time	during	unloading	
v	 Vehicle	speed	
Q	 The	maximum	load	capacity	of	a	vehicle	
Q୧୨	 Products	quantity	from	customer	i	to	customer	j	

Tୣ 	 Time	window′s	starting	time	
Tୣ ୣ	 The	earliest	time	the	customer	can	accept	
T୪	 Time	window′s	ending	time	
T୪୪	 The	latest	time	the	customer	can	accept	
Tୱ	 Departure	time	of	all	vehicles	
W୧	 Time	point	from	vehicle	departure	to	customer	i	
T୨୩	 Time	point	when	vehicle	k	arrives	at	customer	j	

ρ୫ୟ୶	 The	fuel	consumption	per	unit	distance	(full	load)	
ρ଴	 The	fuel	consumption	per	unit	distance	(empty	load)	
η	 The	coefficient	values	of	the	carbon	emissions	

x୧୨୩	
0–1	value,	when	vehicle	k	delivers	cargo	from	node	i	to	

node	j,x୧୨୩ ൌ 1;	otherwise,	x୧୨୩ ൌ 0.	

	
(2) Transportation	cost	
Vehicle	 transportation	 cost	 is	 the	 cost	 incurred	 by	 the	 vehicle	when	 it	 normally	 travels	 for	
distribution	 and	mainly	 refers	 to	 the	 labour	 cost	 and	 the	 fuel	 consumption	 cost	 during	 the	
distribution	process,	which	 is	positively	 related	 to	 the	distance	 traveled	by	 the	vehicle.	The	
transportation	cost	is	given	by:	
	

ଶܥ ൌ ௧ܥ ∑ ∑ ∑ ௜௝௞݀௜௝ݔ
௄
௞ୀଵ

௠ା௡
௝ୀଵ

௠ା௡
௜ୀଵ                                                 	(2)	
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Where	C୲	indicates	 the	 transportation	 cost	 per	 unit	 distance,	d୧୨ 	indicates	 the	 distance	 from	
point	i	to	point	j,	x୧୨୩	is	a	0–1	variable.	When	vehicle	k	travels	from	point	i	to	point	j,	the	value	
is	1;	otherwise,	the	value	is	0.	
Damage	cost	
In	the	distribution	process,	the	quality	of	fresh	food	is	degraded	to	a	certain	extent	over	time,	
which	results	in	damage	cost.	Quality	loss	is	shown	as	an	exponential	change	with	the	advance	
of	time,	and	the	damage	cost	is	calculated	as:	
	

ଷܥ ൌ ௣ܥ ∑ ݃௜. ሺ1ߝ െ ݁ିఏௐ೔௡
௜ୀଵ ሻ                                             	(3)	

	
Where	C୮ 	is	 the	 price	 per	 unit	 of	 product,	 g୧ 	is	 the	 customer	 demand	 at	 point	 i ,	 ε 	is	 the	
deterioration	 rate	 of	 the	 product	 during	 transportation	 and	 handling,	 θ 	is	 the	 product	
sensitivity	coefficient,	and	W୧	is	the	time	from	the	departure	of	the	vehicle	to	point	i.	
Refrigeration	cost	
In	the	distribution	process,	fresh	food	should	be	kept	at	a	low	temperature	to	ensure	quality.	
To	maintain	 a	 low	 temperature,	 the	 vehicle	 battery‐powered	 freezer	 refrigerator	 consumes	
electrical	energy,	and	the	vehicle	does	the	same	in	the	transportation	process.	When	the	vehicle	
arrives	early	at	 the	customer’s	point	 to	wait,	 the	door	of	 the	vehicle	 freezer	remains	closed,	
resulting	in	a	certain	amount	of	energy	consumption.	When	the	vehicle	begins	to	unload,	the	
freezer’s	door	stays	open,	which	can	lead	to	higher	energy	consumption	to	keep	the	product	
from	deteriorating	[41].	The	refrigeration	energy	consumption	is	given	by:	
	

ସଵܥ ൌ ௥ܥ ∑ ∑ ∑ ௜௝ݐଵߙ௜௝௞ݔ
௄
௞ୀଵ

௠ା௡
௝ୀଵ

௠ା௡
௜ୀଵ 																																																				(4)	

 
ସଶܥ ൌ ௥ܥ ∑ ∑ ∑ ଶߙ௜௝௞ݔ ௝ܵ

௄
௞ୀଵ

௠ା௡
௝ୀଵ

௠ା௡
௜ୀଵ  																																																			(5)	

	
Where	 C୰ 	denotes	 the	 unit	 refrigeration	 consumption	 cost,	 αଵ 	and	 αଶ 	denote	 the	 fuel	
consumption	per	unit	 time	of	 the	refrigeration	equipment	during	transportation	and	during	
loading	and	unloading.	The	latter	is	greater	because	the	doors	are	kept	open	during	loading	and	
unloading.	t୧୨	denotes	the	time	the	vehicle	takes	to	travel	from	i	to	j,	and	S୨	denotes	the	service	
time	of	the	vehicle	at	the	customer’s	point	j.	
	

ସܥ ൌ ௥ܥ ∑ ∑ ∑ ௜௝ݐଵߙ௜௝௞൫ݔ ൅ ଶߙ ௝ܵ൯
௄
௞ୀଵ

௠ା௡
௝ୀଵ

௠ା௡
௜ୀଵ 																																									(6)	

	
(3) Time	penalty	cost	
In	cold	chain	logistics,	the	conditions	under	which	the	customer	receives	the	product	are	critical	
because	they	directly	affect	the	customer	revenue,	inventory	control,	and	quality	management.	
Cold	 chain	 logistics	 companies	 should	deliver	products	 according	 to	 the	 customer’s	 specific	
time	requirements.	If	the	vehicle	arrives	too	early,	they	must	wait	until	the	customer	begins	
receiving	 the	 product	 and	 cannot	 meet	 customer	 satisfaction	 requirements.	 If	 the	 vehicle	
arrives	too	late,	the	customer	may	experience	restocking	and	sales	problems.	The	relationship	
between	customer	satisfaction	and	customer	time	window	is	shown	in	Equation	7	and	Figure	
3.	If	the	vehicle	does	not	arrive	within	the	customer’s	time	window,	penalty	costs	are	incurred	
[40].		
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௜ሻݐሺݑ ൌ

ە
ۖۖ
۔

ۖۖ
ۓ

0, 					 ௜ܶ௞ ൏ ௘ܶ௘
்೔ೖି ೐்೐

೐்ି ೐்೐
, 					 ௘ܶ௘ ൑ ௜ܶ௞ ൑ ௘ܶ

										1,					 ௘ܶ௘ ൑ ௜ܶ௞ ൑ ௟ܶ
்೗೗ି்೔ೖ
்೗೗ି்೗

,					 ௟ܶ ൑ ௜ܶ௞ ൑ ௟ܶ௟

0,					 ௜ܶ௞ ൐ ௟ܶ௟

																																																											 (7)	

 
Figure	3.	Customer	satisfaction	based	on	hybrid	time	window	

	
Where	 ሾTୣ , T୪ሿ 	denotes	 the	 time	 window	 required	 by	 the	 customer.	 ሾTୣ ୣ, T୪୪ሿ 	denotes	
themaximum	 delivery	 time	 range	 acceptable	 to	 the	 customer.	 Exceeding	 the	 time	 range,	
customer	 satisfaction	 is	 0	 and	 the	 goods	will	 be	 rejected.	 The	 penalty	 cost	 is	 calculated	 as	
follows:	

ହܥ ൌ ∑ ∑ ௘ܥൣ ൫ݔܽ݉ ௘ܶ െ ௝ܶ௞, 0൯ ൅ ൫ݔ௟݉ܽܥ ௝ܶ௞ െ ௟ܶ, 0൯൧
௄
௞ୀଵ

௠ା௡
௝ୀ௠ାଵ 																																	(8)	

	
Where	Cୣ	and	C୪	denote	the	penalty	cost	due	to	early	arrival	and	late	arrival,	respectively,	and	
T୨୩	denotes	the	time	for	vehicle	k	to	arrive	at	customer	point	j.	

(4) Carbon	emission	cost	
During	the	transportation	process,	the	fuel	consumption	of	vehicles	generates	a	large	amount	
of	carbon	dioxide,	which	causes	the	greenhouse	effect.	By	reducing	the	carbon	emission	cost,	it	
not	only	reduces	 the	 total	distribution	cost	 to	some	extent	but	also	reduces	greenhouse	gas	
emissions	and	harm	to	the	environment	[42].	The	carbon	emission	costs	are	as	follows:	
The	fuel	consumption	of	vehicle	travel	is	related	to	the	distance	traveled	and	influenced	by	the	
vehicle's	 loading	 conditions.	 The	 fuel	 consumption	 per	 unit	 distance	 can	 be	 expressed	 as	
follows:	

ሺܺሻߩ ൌ ଴ߩ ൅
ఘ೘ೌೣିఘబ

ொ
ܺ																																																																				(9)	

	
Where	ρ଴	and	ρ୫ୟ୶	denote	the	fuel	consumption	per	unit	distance	when	empty	and	fully	loaded,	
Q	is	the	maximum	loading	capacity	of	the	vehicle,	and	X	is	the	current	loading	weight.	
Therefore,	the	fuel	consumption	of	vehicle	driving	is	given	as:	
	

ଵܥܨ ൌ ∑ ∑ ∑ ൫ܳ௜௝൯݀௜௝ߩ௜௝௞ݔ
௄
௞ୀଵ

௠ା௡
௝ୀଵ

௠ା௡
௜ୀଵ                        	(10)	
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Where	Q୧୨	denotes	the	loading	capacity	of	the	vehicle	from	point	i	to	point	j.	

The	cost	of	fuel	consumption	in	the	refrigeration	process	is	calculated	by:	
	

ଶܥܨ ൌ ∑ ∑ ∑ ௜௝ݐଵߙ௜௝௞൫ݔ ൅ ଶߙ ௝ܵ൯
௄
௞ୀଵ

௠ା௡
௝ୀଵ

௠ା௡
௜ୀଵ                     	(11)	

	
Carbon	emission	is	the	product	of	fuel	consumption	and	CO2	emission	factor.	
Therefore,	the	carbon	emission	can	be	expressed	as	follows:	
	

ܯܧ ൌ ଵܥܨሺߟ ൅ 	 (12)																																																																							ଶሻܥܨ
	
Where	η	denotes	the	carbon	emission	factor.	
	

଺ܥ ൌ ߟ௖ܥ ∑ ∑ ∑ ൫ܳ௜௝൯݀௜௝ߩ௜௝௞ൣݔ ൅ ௜௝ݐଵߙ ൅ ଶߙ ௝ܵ൧
௄
௞ୀଵ

௠ା௡
௝ୀଵ

௠ା௡
௜ୀଵ                       			(13)	

	
Where	Cୡ	denotes	carbon	tax	price. 
3.4.2. Model	Setting	
The	total	cost	of	cold	chain	 transportation	 includes	 fixed	cost	 (Cଵ),	 transportation	cost	 (Cଶ),	
damage	cost	(Cଷ),	refrigeration	cost	(Cସ),	time	penalty	cost	(Cହ),	and	carbon	emission	cost	(C଺).	
Thus,	the	mathematical	model	is	expressed	as	follows.	
	

۱ܖܑܕ ൌ ۱૚ ൅ ۱૛ ൅ ۱૜ ൅ ۱૝ ൅ ۱૞ ൅ ۱૟																																																			(14)	
	

ܒ܅ ൌ ܑ܅ ൅ ܑ܁ ൅ ,	ܒܑܜ ܑ ് ,	ܒ ܑ ∈ ,	܄ ܒ ∈ ૙܅,	܄ ൌ 	(15)																																										ܛ܂

S.T.	
∑ ∑ ∑ ܒ܏ ∙ ܓܒܑܠ

۹
ୀ૚ܓ

ܖାܕ
ା૚ܕୀܒ

ܖାܕ
ܑୀ૚ ൑ ,ۿ ܓ∀ ∈ ሼ૚, ૛,… , ۹ሽ																																													(16)	

	
∑ ܓܒܑܠ ൌ ૙,ܕ
ܑୀ૚ ܓ∀ ∈ ሼ૚, ૛, … , ۹ሽ, ܒ ∈ ሼ૚, ૛, … 	(17)																																																	ሽܕ,

	
∑ ∑ ܓܒܑܠ

ܕ
ୀ૚ܒ

ܖାܕ
ܑୀ૚ ൌ ૚, ܓ∀ ∈ ሼ૚, ૛, … , ۹ሽ																																																										(18)	

	
∑ ∑ ܓܒܑܠ

ܖାܕ
ା૚ܕୀܒ

ܖାܕ
ܑୀܕା૚ ൌ ૚, ܓ∀ ∈ ሼ૚, ૛, … , ۹ሽ																																																								(19)	

	
∑ ∑ ∑ ܓܒܑܠ

۹
ୀ૚ܓ

ܖାܕ
ା૚ܕୀܒ

ܖାܕ
ܑୀ૚ ൌ ૚, ܓ∀ ∈ ሼ૚, ૛, … , ۹ሽ																																																						(20)	

	
∑ ∑ ∑ ܓܒܑܠ

۹
ୀ૚ܓ

ܕ
ܑୀ૚

ܖାܕ
ା૚ܕୀܒ ൌ ∑ ∑ ∑ ܓܑܒܠ

۹
ୀ૚ܓ

ܕ
ୀ૚ܒ

ܖାܕ
ܑୀܕା૚ ൑ ૚																																														(21)	

	
Where	 Equation	 (14)	 indicates	 the	 composition	 of	 the	 total	 cost	 of	 the	 objective	 function;	
Equation	(15)	indicates	that	the	whole	cold	chain	logistics	distribution	process	is	continuous;	
Equation	(16)	indicates	that	the	vehicle	cannot	be	overloaded	in	the	transportation	process;	
Equations	(17)–(19)	indicate	that	the	vehicle	can	only	depart	from	the	distribution	center	and	
cannot	enter	other	distribution	centers	in	the	distribution	process;	Equation	(20)	indicates	that	
each	customer	can	only	be	served	by	one	vehicle	once;	Equation	(21)	states	that	the	distribution	
vehicle	can	start	from	the	distribution	center	and	can	return	to	any	distribution	center	after	
serving	all	customers.	
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4. Solution	Methodology	

The	classical	VRP	belongs	to	the	NP‐hard	problem,	so	the	GCCLVRP‐RS	to	be	solved	in	this	paper	
also	 has	 the	 NP‐hard	 property.	When	 the	 actual	 distribution	 chain	 contains	 more	 demand	
points,	the	solution	process	is	more	complicated,	and	it	is	more	difficult	to	solve	the	problem	
with	the	exact	algorithm.	In	this	paper,	a	two‐stage	algorithm	based	on	customer	clustering	and	
vehicle	routing	optimization	is	designed	to	solve	the	GCCLVRP‐RS	problem.	This	paper	presents	
a	two‐stage	hybrid	algorithm	consisting	of	k‐means	and	simulated	annealing	improved	genetic	
algorithm.	In	the	first	stage,	the	k‐means	clustering	algorithm	is	used	to	reconstruct	customers	
and	resources.	The	main	objective	of	the	second	stage	is	to	optimize	the	vehicle	routes	and	find	
the	optimal	solution.	In	Figure	4,	we	clearly	show	the	two‐stage	algorithm.	

4.1. K‐Means	Clustering	Algorithm	
Customer	clustering	is	an	important	measure	to	reduce	the	complexity	of	solving	multi‐depot	
VRP	problems.	K‐means	algorithm	is	widely	used	to	solve	multi‐depot	VRP	due	to	its	simplicity	
and	efficiency	[43].	The	model	studied	in	this	paper	has	multiple	distribution	centers,	so	it	can	
also	 be	 considered	 as	 a	 multi‐depot	 VRP.	 In	 the	 existing	 research	 on	 multi‐network	 VRP	
distribution	 path	 optimization,	 most	 of	 the	 customer	 points	 are	 clustered	 using	 Euclidean	
distance.	For	the	characteristics	of	time‐sensitive	cold	chain	logistics	distribution,	time	is	also	
added	 to	 the	 Euclidean	 distance	 to	 portray	 the	 similarity	 among	 customers	 in	 this	 paper.	
Customers	 A,	 B	 are	 geographically	 located	 in	 distribution	 areas	 ሺxୟ, yୟሻ 	and	 ሺxୠ, yୠሻ .	
Distribution	 time	 windows	 are	 ሾTୟଵ, Tୟଶሿ 	and	 ሾTୠଵ, Tୠଶሿ .	 The	 distribution	 time	 window	
arithmetic	 averages	 are	 tୟ ൌ ሺTୟଵ ൅ Tୟଶሻ 2⁄ 	and	 tୠ ൌ ሺTୠଵ ൅ Tୠଶሻ 2⁄ .	 Define	 the	 spatial‐
temporal	distance	between	any	two	customers	A	and	B	as:	

	Sୟୠ ൌ ඥሺxୟ െ xୠሻଶ ൅ ሺyୟ െ yୠሻଶ ൅ βଶሺtୟ െ tୠሻଶ.	Where	β	is	the	time	cost	conversion	coefficient,	
which	is	the	ratio	of	time	loss	cost	to	transportation	cost.	The	k‐means	clustering	pseudo‐code	
based	on	spatial‐temporal	distance	is	listed	in	Algorithm	1.	
	

Input:	 Nodes	 information,	 including	 distribution	 centers	 and	 customers	
information,	such	as	the	coordination,	demands,	and	time	windows	
Output:	The	clustering	results		
Step	1:	Select	k	objects	as	the	initial	clustering	centers		
Step	2:	Calculate	the	spatial‐temporal	distance	between	each	customer	and	each	
clustering	center		
Step	3:	Assign	each	customer	to	their	closest	clustering	center		
Step	4:	If	some	customers	need	to	be	adjusted	among	the	clustering	results,	then	
enter	Step	3;	otherwise,	go	to	Step	5		
Step	5:	Update	the	clustering	centers		
Step	6:	Output	the	clustering	results

ALGORITHM	1.	Procedure	of	k‐means	algorithm	

4.2. Simulated	Annealing	Improved	Genetic	Algorithm	
The	 traditional	genetic	algorithm	has	premature	convergence	and	 is	easy	 to	 fall	 into	a	 local	
optimal	 solution.	 Hence,	 this	 paper	 designs	 and	 proposes	 a	 Simulated	 Annealing	 Improved	
Genetic	Algorithm	(SAIGA),	which	combines	the	global	search	performance	of	 the	simulated	
annealing	algorithm	with	the	fast	convergence	performance	of	the	genetic	algorithm,	thereby	
improving	 the	 local	 search	 capability	 of	 the	 genetic	 algorithm.	 Avoid	 falling	 into	 the	 local	
optimum,	 and	 use	 the	 rule	 of	 probability	 change	 to	 guide	 the	 search	 direction,	 so	 that	 the	
algorithm	has	self‐learning	and	self‐adaptability.	
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Figure	4.	Flow	chart	of	the	two‐stage	algorithm	
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Integer	 encoding	 is	 used	 in	 this	 study,	 Negative	 numbers	ሼെm,െm൅ 1,… ,െ1ሽ	are	 used	 to	
represent	the	distribution	center,	and	real	numbers	ሼ1,2, … , nሽ	are	used	to	represent	customer	
points.	 The	 chromosome	 is	 composed	 of	 n 	customer	 points	 arrangements.	 The	 decoding	
process	of	the	chromosome	is	shown	in	Figure	5.	Taking	10	customer	points	and	4	distribution	
centers	as	an	example,	first	insert	the	virtual	distribution	center	0	at	the	beginning	and	end	of	
the	chromosome,	and	then	accumulate	the	demand	for	customer	points	from	the	first	customer	
point	of	the	chromosome	Assuming	that	at	the	time	of	customer	3,	the	total	demand	is	greater	
than	the	maximum	load	of	the	vehicle,	insert	two	zeros	in	front	of	customer	3,	and	start	from	
customer	3	and	re‐accumulate.	After	traversing	all	chromosomes,	according	to	the	customer	
point	to	the	left	or	right	of	0,	replace	0	with	the	distribution	center	closest	to	the	customer	point.	

2 4 1 6 3 5 10 7 9 8

2 4 1 6 3 5 10 7 9 80 0 0 0 0 0

2 4 1 6 3 5 10 7 9 8-1 -3 -2 -1 -1 -4

Chromosome coding

Chromosome decoding

Replace

 
Figure	5.	Schematic	diagram	of	chromosome	encoding	and	decoding	

	
(2)	Population	initialization	
Using	the	method	of	random	generation,	popsize	individuals	are	generated	to	form	the	initial	
population	 popሺhሻ ,	 the	 number	 of	 initialization	 iterations	 gen ൌ 0 ,	 Tሺ0ሻ 	is	 the	 initial	
temperature,	 and	 Max 	is	 the	 maximum	 number	 of	 initialization	 iterations.	 If	 the	 initial	
temperature	Tሺ0ሻ	is	 too	 large,	 the	 algorithm	 iteration	 time	 is	 longer,	 and	 it	 is	 not	 easy	 to	
converge;	 if	 it	 is	 too	 small,	 it	 is	 easy	 to	 fall	 into	 a	 local	 optimum.	 In	 this	 paper,	 the	 initial	
temperature	of	the	simulated	annealing	algorithm	is	set	to	5000,	the	cooling	coefficient	γ	is	0.95,	
and	the	termination	temperature	T୫୧୬ ൌ 300.	
(3)	Fitness	function	
The	fitness	of	each	chromosome	in	the	population	can	be	constructed	by	the	model	objective	
function	equation	(14).	In	this	paper,	the	objective	function	value	is	the	total	delivery	cost,	so	
the	 smaller	 the	 delivery	 cost,	 the	 greater	 the	 chromosome	 fitness	 value.	 Therefore,	 the	
reciprocal	of	the	objective	function	is	selected	as	the	fitness.	
	

௜݂ ൌ
ଵ

஼
                                       (22)	

4.2.2. Algorithm	Operator	
(1)	Elite	retention	strategy	
According	 to	 the	 calculated	 fitness	 value,	 the	 individuals	 of	 the	 population	 are	 arranged	 in	
descending	order,	and	the	individual	with	the	largest	objective	function	value	is	marked	as	F୫ୟ୶,	
and	the	individual	does	not	perform	crossover	and	mutation	operations.	
(2)	Select	operation	
Through	 the	 roulette	 selection	 method,	 chromosomes	 are	 selected	 in	 the	 population.	 The	
higher	the	chromosome	fitness,	the	greater	the	probability	of	roulette	selection,	as	shown	in	
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equation	(23).	p୧	is	the	probability	that	i	individual	is	selected,	f୧	and	f୨	are	the	fitness	values	of	
i	and	j	individuals,	 and	popsize	is	 the	population	 size.	p଴ ൌ 0,	Rଵ	is	 a	 random	number	 in	 the	
interval	 [0,1],	 when	 ∑ p୨

୧ିଵ
୨ୀ଴ ൑ Rଵ ൑ ∑ p୨

୧
୨ୀ଴ ,	 choose	 Individual	 i .	 Through	 the	 selection	

operation	cycle	selection,	a	new	population	Newpopሺhሻ	is	formed.	
	

p୧ ൌ
	୤౟

∑ ୤ౠ
౦౥౦౩౟౰౛
ౠసభ

																																																																													(23)	

	
(3)	Crossover	and	mutation	operation	
According	 to	 the	 sequential	 crossover	 method,	 Newpopሺhሻ 	is	 crossed	 with	 the	 crossover	
probability	Pୡ	to	obtain	the	new	population	Cpopሺhሻ.	This	means	that	individuals	participating	
in	 the	 crossover	 operation	 will	 have	 the	 probability	 that	Pୡ 	crosses	 their	 gene	 sequences	
through	the	partially	mapped	crossover	operator	to	generate	new	individuals	with	new	gene	
sequences.	The	first	step	of	the	sequential	crossover	method	is	to	first	insert	two	crossovers	on	
one	individual	of	the	paired	chromosomes,	copy	the	gene	segment	between	the	crossovers	to	
the	same	position	in	the	offspring,	as	shown	in	the	operation	in	Figure	6	below,	and	finally	find	
the	position	of	the	same	gene	on	the	other	parent	chromosome	and	insert	the	remaining	genes	
into	the	offspring	individuals	in	sequence.	
	

 
Figure	6.	Crossover	operations	

	
The	population	Cpopሺhሻ	is	subjected	to	swap	mutation	operation	with	the	mutation	probability	
P୫,	and	a	new	population	Mpopሺhሻ	is	obtained.	Swap	mutation	 is	a	 relatively	simple	way	of	
mutation,	 the	 mutation	 is	 achieved	 by	 randomly	 selecting	 two	 gene	 sites	 on	 a	 certain	
chromosome	to	swap	positions.	By	this	operation,	the	local	search	ability	of	the	algorithm	can	
be	improved.	The	specific	mutation	method	is	shown	in	Figure	7.	This	paper	sets	the	adaptive	
crossover	and	mutation	probability,	as	shown	in	equations	(24)	and	(25).	
	

53 2 7 9 63 1 4 8

85 2 1 9 63 7 4 5

Swap

 
Figure	7.	Mutation	operation	

	

53 2 7 9 63 1 4 8

85 2 7 9 63 1 4 5

59 1 8 3 72 4 6 5

father generation1

father generation2

new individual

duplicate

Remove
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௖ܲ ൌ ൝ ௖ܲଵ െ
ሺ௉೎భି௉೎మሻ൫௙ᇲିிೌ ೡ೐൯

ி೘ೌೣିிೌ ೡ೐
	 , ݂ᇱ ൒ ௔௩௘ܨ

௖ܲଵ	, ݂ᇱ ൏ ௔௩௘ܨ
                       (24)	

	

௠ܲ ൌ ൝ ௠ܲଵ െ
ሺ௉೘భି௉೘మሻሺி೘ೌೣି௙ሻ

ி೘ೌೣିிೌ ೡ೐
	 , ݂ ൒ ௔௩௘ܨ

௠ܲଵ	, ݂ ൏ ௔௩௘ܨ
                      (25)	

	
Where	Pୡଵ	and	Pୡଶ	are	the	maximum	and	minimum	crossover	probability,	P୫ଵ	and	P୫ଶ	are	the	
maximum	 and	 minimum	 mutation	 probability,	 f ᇱ 	is	 the	 larger	 fitness	 value	 among	 the	
individuals	to	be	crossed,	and	f	is	the	fitness	value	to	be	mutated	,	The	fitness	of	the	individual	
to	be	mutated	is	greater,	and	the	probability	of	mutation	is	 lower.	When	the	fitness	value	is	
lower,	the	population	variation	and	crossover	probability	values	are	larger,	and	the	population	
diversity	can	be	increased,	avoiding	the	algorithm	from	falling	into	the	local	optimal	solution,	
and	improving	the	global	search	ability.	This	article	sets	up	simulated	annealing	improvement	
steps	after	the	cross‐mutation	operation	to	further	strengthen	the	global	search	capability.	
(4)	Improved	simulated	annealing	operation	
In	view	of	the	poor	local	search	ability	of	genetic	algorithm,	a	large	number	of	iterations	are	
required	to	obtain	the	optimal	solution.	After	the	simulated	annealing	algorithm	is	introduced	
into	the	cross‐mutation	operation,	the	simulated	annealing	algorithm	is	tolerant	to	some	poor	
solutions	and	can	 jump	out	of	 the	 local	optimal	solution.	Strong	search	ability.	Calculate	the	
temperature	Tሺhሻ	iterated	 to	 the	 current	 generation	by	 formula	 (26),	 and	 then	perform	 the	
following	operations	on	the	individuals	in	Mpopሺhሻ	to	form	a	new	population	Spopሺhሻ.	
1)	 Sort	 the	 population	Mpopሺhሻ	according	 to	 the	 fitness	 value,	 and	 select	 individuals	 with	
greater	fitness	after	the	genetic	link.	Calculate	the	fitness	value	f୧	of	the	current	individual	i.	
2)	Perform	genetic	manipulation	and	generate	a	new	individual	a.	Calculate	the	fitness	value	of	
the	individual	and	record	it	as	fୟ.	
3)	 If	 the	 fitness	 value	fୟ 	of	 the	 individual	 is	 greater	 than	 the	 fitness	 value	f୧ 	of	 the	 current	
individual	i	in	 the	 corresponding	population,	 replace	 the	 individual	i	in	 the	 population	with	
individual	a;	otherwise,	calculate	the	fitness	difference	∆E ൌ f୧ െ fୟ	of	the	two	bodies,	according	
to	 formula	 (27)	 Calculate	 the	 probability	Pୱ,	 and	 then	 generate	 a	 random	number	Rଶ	in	 the	
interval	 [0,1].	 If	 Pୱ ൐ Rଶ ,	 still	 use	 the	 randomly	 generated	 chromosome	 to	 replace	 the	
chromosome	in	the	population.	Otherwise,	no	replacement	will	be	performed,	and	the	original	
individual	in	the	population	will	remain	unchanged.	
	

		Tሺh ൅ 1ሻ ൌ γTሺhሻ																																																																									(26)	
	

Pୱ ൌ eሾି∆୉/୘ሺ୦ሻሿ																																																																												(27)	
	

Replace	the	individual	with	the	lowest	fitness	value	in	Spopሺhሻ	with	F୫ୟ୶,	and	then	determine	
whether	gen	is	 less	 than	 the	maximum	number	 of	 iterations	Max,	 if	gen ൏ Max,	 update	 the	
annealing	 temperature,	 let	h ൌ h ൅ 1,	popሺh ൅ 1ሻ ൌ Spopሺhሻ,	gen ൌ gen ൅ 1,	 proceed	 to	 the	
next	 iteration;	 if	gen ൒ Max,	 judge	 whether	 the	 current	 temperature	Tሺhሻ 	is	 less	 than	 the	
termination	temperature	T୫୧୬,	if	yes,	terminate	the	iteration	and	output	the	optimal	solution,	if	
not,	update	The	annealing	temperature	proceeds	to	the	next	iteration.	
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5. Computational	Experiments	

5.1. Case	Study	1	
Table	3.	Customer	locations,	demands,	and	time	windows 

Customers	 X(km)	 Y(km)	 Demands(t)	
Time	windows	 Service	

time(h)	ሾTୣ , T୪ሿ	 ሾTୣ ୣ, T୪୪ሿ	
1	 ‐29.73	 64.136	 1.2	 8:30‐14:30	 7:30‐15:30	 0.4	
2	 ‐30.664	 5.463	 0.8	 8:30‐15:30	 7:30‐16:30	 0.27	
3	 51.642	 5.469	 1.6	 7:30‐11:00	 6:30‐12:00	 0.53	
4	 ‐13.171	 69.336	 0.5	 8:30‐15:30	 7:30‐16:30	 0.17	
5	 ‐67.413	 68.323	 1.2	 8:30‐15:30	 7:30‐16:30	 0.40	
6	 48.907	 6.274	 0.5	 8:30‐10:30	 7:30‐11:30	 0.17	
7	 5.243	 22.26	 1.3	 8:30‐15:30	 7:30‐16:30	 0.43	
8	 ‐65.002	 77.234	 2.0	 8:30‐15:30	 7:30‐16:30	 0.67	
9	 ‐4.175	 ‐1.569	 1.3	 8:30‐10:30	 7:30‐11:30	 0.43	
10	 23.029	 11.639	 1.8	 7:30‐12:30	 6:30‐13:30	 0.60	
11	 25.482	 6.287	 0.7	 8:30‐11:00	 7:30‐12:00	 0.23	
12	 ‐42.615	 ‐26.392	 0.6	 8:30‐15:30	 7:30‐16:30	 0.20	
13	 ‐76.672	 99.341	 0.9	 7:30‐15:30	 6:30‐16:30	 0.30	
14	 ‐20.673	 57.892	 0.9	 6:30‐10:30	 6:30‐11:30	 0.30	
15	 ‐52.039	 6.567	 0.4	 6:30‐9:30	 6:30‐10:30	 0.13	
16	 ‐41.376	 50.824	 2.5	 7:30‐16:30	 6:30‐17:30	 0.83	
17	 ‐91.943	 27.588	 0.5	 7:30‐15:30	 6:30‐16:30	 0.17	
18	 ‐65.118	 30.212	 1.7	 6:30‐9:30	 6:30‐10:30	 0.57	
19	 18.597	 96.716	 0.3	 7:30‐15:30	 6:30‐16:30	 0.10	
20	 ‐40.942	 83.209	 1.6	 6:30‐12:00	 6:30‐13:00	 0.53	
21	 ‐37.756	 ‐33.325	 2.5	 7:30‐12:00	 6:30‐13:00	 0.83	
22	 29.083	 29.083	 2.1	 7:30‐16:30	 6:30‐17:30	 0.70	
23	 43.03	 20.453	 1.4	 7:30‐16:30	 6:30‐17:30	 0.47	
24	 ‐35.297	 ‐24.896	 1.9	 6:30‐16:30	 6:30‐17:30	 0.63	
25	 ‐54.755	 140368	 1.4	 8:30‐15:30	 7:30‐16:30	 0.47	
26	 ‐49.329	 33.374	 0.6	 6:30‐12:00	 6:30‐13:00	 0.20	
27	 57.404	 23.822	 1.6	 7:30‐14:30	 6:30‐17:30	 0.53	
28	 ‐22.754	 55.408	 0.9	 8:30‐13:30	 7:30‐14:30	 0.30	
29	 ‐56.622	 73.34	 2.0	 7:30‐16:30	 6:30‐17:30	 0.67	
30	 ‐38.562	 ‐3.705	 1.3	 6:30‐12:00	 6:30‐13:00	 0.43	
31	 ‐16.779	 19.537	 1.0	 7:30‐15:30	 6:30‐16:30	 0.33	
32	 ‐11.53	 11.615	 1.6	 6:30‐10:30	 6:30‐11:30	 0.53	
33	 ‐46.545	 97.974	 1.9	 6:30‐9:30	 6:30‐10:30	 0.63	
34	 16.229	 9.32	 2.2	 7:30‐12:00	 6:30‐13:00	 0.73	
35	 1.294	 7.349	 1.4	 7:30‐16:30	 6:30‐17:30	 0.47	
36	 ‐26.404	 29.529	 1.0	 8:30‐14:00	 7:30‐15:00	 0.33	
37	 4.352	 14.685	 1.1	 7:30‐15:30	 6:30‐16:30	 0.37	
38	 ‐50.665	 ‐23.126	 1.5	 7:30‐16:30	 6:30‐17:30	 0.50	
39	 ‐22.833	 ‐9.814	 1.3	 6:30‐12:00	 6:30‐13:00	 0.43	
40	 ‐71.1	 ‐18.616	 1.5	 7:30‐16:30	 6:30‐17:30	 0.50	
41	 ‐7.849	 32.074	 0.8	 7:30‐16:30	 6:30‐17:30	 0.27	
42	 11.877	 ‐24.933	 2.2	 7:30‐11:30	 6:30‐12:30	 0.73	
43	 ‐18.927	 ‐23.73	 2.4	 7:30‐16:30	 6:30‐17:30	 0.80	
44	 ‐11.92	 11.755	 0.3	 7:30‐16:30	 6:30‐17:30	 0.10	
45	 29.84	 11.633	 2.5	 7:30‐11:30	 6:30‐12:30	 0.83	
46	 12.268	 ‐55.811	 1.9	 6:30‐13:30	 6:30‐14:30	 0.63	
47	 ‐37.933	 ‐21.613	 2.1	 7:30‐12:00	 6:30‐13:00	 0.70	
48	 42.883	 ‐2.966	 1.0	 7:30‐16:30	 6:30‐15:30	 0.33	
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The	empirical	data	for	Case	Study	1	were	obtained	from	Fan	[40].	The	empirical	data	consisted	
of	four	distribution	centers	and	48	customer	locations.	Each	distribution	center	is	responsible	
for	the	distribution	of	12	customer	points.	These	characteristics	of	the	empirical	data	used	in	
this	study	are	consistent	with	the	actual	situation	in	the	cold	chain	logistics	industry.	Table	3	
shows	the	customer	locations,	customer	demand,	and	customer	preferred	time	windows.	Table	
4	shows	the	detailed	settings	of	the	parameters.	Fan	proposes	a	joint	distribution	method	to	
optimize	the	distribution	path	and	compares	it	with	single	distribution.	However,	it	ignores	the	
environmental	 impact	 during	 the	 transportation	 process,	 nor	 does	 it	 consider	 the	 spatial‐
temporal	distance	between	customers.	In	this	paper,	we	consider	the	carbon	tax	mechanism	
and	compare	the	above	two	distribution	models	with	the	distribution	model	under	the	resource	
sharing	strategy.	
 

Table	4.	Parameter	settings	in	the	case	study	
Symbols	 Description	 value	 Unit	

m	 Number	of	distribution	centers	 4	 none	
n	 Number	of	customers	 28	 none	
C୤	 Fixed	cost	of	each	vehicle	 200	 RMB/car	
C୲	 Transportation	cost	of	per	unit	distance	 3	 RMB/km	
C୮	 Cold	chain	products	price	per	unit	 5000	 RMB/t	

C୰	 Refrigeration	consumption	cost	per	unit	 6.68	 RMB/L	
Cୣ	 Punishment	cost	due	to	the	early	arrival	 30	 RMB/h	
C୪	 Punishment	cost	due	to	the	late	arrival	 50	 RMB/h	
Cୡ	 Carbon	price	 0.25	 RMB/kg	

ε	
The	deterioration	rate	of	the	product	freshness	

during	transportation	
1	 none	

θ	 Cold	chain	products′	sensitivity	factor	 0.002	 none	

αଵ	
The	fuel	consumption	of	refrigeration	equipment	per	

unit	time	during	transportation	
2	 L/h	

αଶ	
The	fuel	consumption	of	refrigeration	equipment	per	

unit	time	during	unloading	
2.5	 L/h	

v	 Vehicle	speed	 60	 km/h	
Q	 The	maximum	load	capacity	of	a	vehicle	 10	 t	

ρ୫ୟ୶	 The	fuel	consumption	per	unit	distance	(full	load)	 0.677	 L/km	
ρ଴	 The	fuel	consumption	per	unit	distance	(empty	load) 0.253	 L/km	
η	 The	coefficient	values	of	the	carbon	emissions	 2.63	 kg/L	
β	 Time‐cost	conversion	factor	 0.443	 none	

	
Table	5	and	Figure	8	give	 the	optimal	vehicle	routes	 for	 the	single	distribution	mode	of	 the	
logistics	network,	including	specific	information	for	each	service	route.	In	Figure	8,	an	obvious	
feature	is	that	the	customer	locations	of	each	distribution	center	are	scattered,	and	distribution	
through	the	single	distribution	mode	results	in	a	long	distance	from	the	distribution	vehicle	to	
the	customer	point	and	a	long	distribution	and	delivery	time,	leading	to	high	logistics	costs.	
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Table	5.	Specific	costs	for	the	single	distribution	model	scheme	

Number	 Route	
Total	
Costs	
(RMB)	

Travel	
distance	
(km)	

Carbon	emissions	
costs(kg)	

Cargo	
load(t)	

1	 C1‐‐>7‐‐>1‐‐>5‐‐>8‐‐>4‐‐>3‐
‐>6‐‐>C1	

1569.02	 302.08	 358.684	 8.3	

2	 C1‐‐>10‐‐>11‐‐>9‐‐>12‐‐>2‐
‐>C1	

940.31	 171.07	 170.568	 5.2	

3	 C2‐‐>23‐‐>15‐‐>18‐‐>17‐
‐>16‐‐>22‐‐>C2	

1535.72	 271.57	 375.196	 8.6	

4	 C2‐‐>24‐‐>21‐‐>14‐‐>20‐
‐>13‐‐>19‐‐>C2	

2006.31	 418.73	 456.12	 8.1	

5	 C3‐‐>32‐‐>35‐‐>34‐‐>27‐
‐>31‐‐>28‐‐>C3	

1346.78	 242.51	 298.024	 8.7	

6	 C3‐‐>33‐‐>29‐‐>26‐‐>25‐
‐>30‐‐>36‐‐>C3	

1254.01	 218.48	 281.092	 8.2	

7	 C4‐‐>39‐‐>42‐‐>46‐‐>48‐
‐>45‐‐>C4	

1273.29	 224.56	 277.58	 8.9	

8	 C4‐‐>40‐‐>38‐‐>47‐‐>43‐
‐>44‐‐>37‐‐>41‐‐>C4	

1269.18	 210.43	 276.036	 9.7	

Total	 	 11194.62 2059.44	 2493.3	 65.7	

 
Figure	8.	Optimal	distribution	routes	for	single	distribution	model	

	
Table	6	 and	Figure	9	 give	 the	optimal	 vehicle	 routes	 for	 joint	distribution	model,	 including	
specific	 information	 of	 each	 service	 route.	 The	 joint	 distribution	 considers	 the	 distribution	
problem	 as	 a	 vehicle	 path	 problem	of	multiple	 distribution	 centers,	 but	when	planning	 the	
vehicle	routes,	the	temporal	and	spatial	distances	of	customer	points	are	not	considered,	and	
the	advantages	of	resource	sharing	are	not	fully	exploited.	Therefore,	although	there	is	some	
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reduction	in	total	cost	and	carbon	emission	compared	with	the	individual	distribution	model,	
there	is	still	room	for	optimization.	
	

Table	6.	Specific	costs	for	the	joint	distribution	model	scheme	

Number	 Route	
Total	
Costs	
(RMB)	

Travel	
distance	
(km)	

Carbon	emissions	
costs(kg)	

Cargo	
load(t)	

1	 C1‐‐>41—>31‐‐>44‐‐>32‐‐>9‐
‐>35‐‐>37‐‐>7‐‐>C1	

820.00	 96.95	 151.39	 8.80	

2	 C2‐‐>22‐‐>45‐‐>11‐‐>10‐‐>34‐
‐>C2	

658.56	 60.00	 101.00	 9.30	

3	 C2‐‐>48‐‐>3‐‐>6‐‐>27‐‐>19‐‐>4‐
‐>16‐‐>C3	

1314.30	 227.70	 290.89	 8.00	

4	 C3‐‐>18‐‐>17‐‐>5‐‐>8‐‐>13‐
‐>29‐‐>C3	

1234.80	 207.92	 279.52	 8.30	

5	 C3‐‐>33‐‐>20‐‐>1‐‐>14‐‐>28‐
‐>36‐‐>26‐‐>C3	

1064.10	 172.05	 225.95	 8.10	

6	 C4‐‐>30‐‐>21‐‐>43‐‐>39‐‐>2‐
‐>C4	

746.23	 95.99	 136.81	 8.30	

7	 C4‐‐>24‐‐>47‐‐>12‐‐>46‐‐>42‐
‐>C1	

1045.40	 168.77	 213.54	 8.70	

8	 C4‐‐>38‐‐>40‐‐>15‐‐>25‐‐>23‐
‐>C4	

821.71	 127.81	 157.76	 6.20	

Total	 	 7705.10	 1157.19	 1556.86	 65.7	

 
Figure	9.	Optimal	distribution	routes	for	joint	distribution	model	

	
Resources	 are	 integrated	 and	 distribution	 tasks	 are	 planned	 through	 a	 resource	 sharing	
strategy.	 Customer	 points	 are	 first	 clustered	 by	 spatial‐temporal	 distance	 using	 K‐means	
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clustering	method.	The	results	of	the	customer	point	clustering	are	shown	in	Table	7	and	Figure	
10.	In	which,	the	customer	points	39	and	43	are	relatively	close	to	the	distribution	center	4	in	
terms	of	spatial	distance.	If	the	vehicle	departs	from	the	distribution	center	1	and	the	customer	
points	39	and	43	are	the	last	customers	to	deliver,	it	will	return	to	the	distribution	center	4.	In	
the	same	way,	although	customer	points	17,18,26,36	are	served	by	distribution	center	4,	they	
are	closer	to	distribution	center	3.	If	the	last	service	point	of	the	vehicle	distribution	route	is	
17,18,26,36,	it	will	return	to	distribution	center	3.After	completing	the	customer	clustering,	the	
optimal	path	of	the	distribution	center	is	solved	by	the	improved	genetic	algorithm,	which	is	
run	 10	 times	 to	 obtain	 the	 optimal	 solution	 as	 shown	 in	 Table	 8.	 Figure	 11	 shows	 the	
distribution	paths	after	resource	sharing	optimization.	
	

Table	7.	Distribution	centers	and	customer	points	of	service	
Depots	 X(km)	 Y(km)	 Customers	
C1	 4.163	 13.559	 7,9,31,32,35,37,39,41,42,43,44,46	
C2	 21.387	 17.105	 3,6,10,11,22,27,34,45,48	
C3	 ‐36.118	 49.097	 1,4,5,8,13,14,16,19,20,28,29,33	
C4	 ‐31.201	 0.235	 2,12,15,17,18,21,23,24,25,26,30,36,38,40,47	

 
Table	8.	Specific	costs	of	resource	sharing	distribution	scheme	

Number	 Route	
Total	
Costs	
(RMB)	

Travel	
distance	
(km)	

Carbon	emissions	
costs(kg)	

Cargo	
load(t)	

1	
C1‐‐>37‐‐>7‐‐>35‐‐>9‐‐>32‐‐>44‐

‐>31‐‐>41‐‐>C1	 745.67	 96.80	 122.36	 8.80	

2	 C1‐‐>39‐‐>43‐‐>46‐‐>42‐‐>C1	 996.71	 165.04	 207.48	 7.80	

3	 C2‐‐>10‐‐>45‐‐>11‐‐>48‐‐>6‐‐>3‐
‐>27‐‐>C2	

821.15	 108.87	 134.58	 9.70	

4	 C2‐‐>34‐‐>22‐‐>C2	 417.18	 42.70	 49.11	 4.30	

5	
C3‐‐>20‐‐>33‐‐>13‐‐>8‐‐>5‐‐>29‐

‐>C3	 1072.48	 158.28	 227.96	 9.60	

6	 C3‐‐>16‐‐>1‐‐>28‐‐>14‐‐>4‐‐>19‐
‐>C3	

888.62	 165.79	 153.76	 6.30	

7	
C4‐‐>15‐‐>25‐‐>23‐‐>36‐‐>26‐
‐>18‐‐>17‐‐>40‐‐>2‐‐>C4	 1448.36	 231.49	 292.32	 9.30	

8	 C4‐‐>30‐‐>38‐‐>12‐‐>21‐‐>24‐
‐>47‐‐>C4	

755.79	 84.24	 129.82	 9.90	

Total	 	 7145.94	 1053.21	 1317.39	 65.7	

 
Figure	10.	Clustering	Result	
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Figure	11.	Optimal	distribution	routes	for	resource	sharing	distribution	model		

	
Table	9.	Comparison	of	different	models	

Distribution	mode	 Total	costs	 Carbon	emissions(kg)	 Distance	(km)	 Damage	costs(RMB)	
Single	distribution	 11194.62	 2493.3	 2059.44	 1965.94	
Joint	distribution	 7705.10	 1556.86	 1157.19	 1531.47	
Resource	sharing	 7145.94	 1317.39	 1053.21	 1370.27	

	
Comparison	of	different	modes	 is	 shown	 in	Table	9.	The	 total	 cost	was	 reduced	by	33.17%	
through	 the	 joint	 distribution	 model.	 Under	 the	 distribution	 model	 based	 on	 the	 resource	
sharing	strategy,	 the	cumulative	total	cost	was	7,145.95	RMB,	which	was	significantly	 lower	
than	the	cumulative	total	cost	of	4048.68	RMB	for	single	distribution	and	559.16	RMB	for	joint	
distribution.	In	addition,	the	carbon	emission	of	the	product	was	reduced	to	1317.39	kg,	which	
was	optimized	by	47.16%	compared	to	the	single	distribution	mode	and	15.38%	compared	to	
the	joint	distribution.	Moreover,	when	the	distribution	mode	with	resource	sharing	strategy	is	
adopted,	 the	distribution	distance	can	be	 reduced	 to	1053.21	km,	and	 the	 joint	distribution	
mode	 is	 1157.19km.	 In	 terms	 of	 damage	 costs,	 434.47	 RMB	 can	 be	 saved	 through	 joint	
distribution,	 while	 the	 resource	 sharing	 model	 is	 595.73	 RMB.	 Since	 the	 two	 previous	
distribution	 models	 did	 not	 consider	 the	 spatial‐temporal	 distances	 between	 distribution	
centers,	longer	travel	times	with	larger	vehicle	loading	rates	resulted	in	higher	costs	and	carbon	
emissions.	 The	 GCCLVRP‐RS	 proposed	 in	 this	 paper	 shares	 the	 resources	 of	 enterprises,	
clusters	them	by	the	spatial‐temporal	distance	of	customers,	and	then	plans	distribution	paths	
by	 simulated	 annealing	 improved	 genetic	 algorithm.	The	GCCLVRP‐RS	 fully	 improves	 inter‐
enterprise	cooperation,	rational	planning	of	resources,	and	reduction	of	driving	distance,	while	
achieving	economic	and	environmental	benefits.	

5.2. Case	Study	2	
In	 the	previous	section,	we	demonstrated	 the	superiority	of	GCCLVRP‐RS.	 In	 reality,	 carbon	
prices	are	likely	to	increase	or	decrease	over	time.	Therefore,	17	different	carbon	prices	are	
considered	in	this	section	to	analyze	the	trends	in	carbon	emissions,	carbon	costs	and	total	costs.	
Empirical	data	are	from	four	cold	chain	logistics	companies	in	Chengdu,	China.	They	distributed	
the	same	frozen	food	to	customers	in	the	center	of	Chengdu.	Each	cold	chain	logistics	company	
operates	independently	and	has	a	warehouse	serving	7	customers,	which	is	relatively	small.	
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Cold	 chain	 logistics	 companies	 need	 to	 sell	 very	 few	 cold	 chain	 products	 every	 day.	 The	
empirical	data	used	in	this	study	are	representative	of	the	cold	chain	logistics	industry	in	China	
and	reflect	its	characteristics.	Table	10	shows	the	customer	locations,	customer	demand,	and	
customer	preferred	time	windows.	The	maximum	loading	capacity	of	the	transport	vehicle	is	
2t,	and	the	fuel	consumption	per	unit	distance	is	0.165L/km	and	0.377L/km	when	empty	and	
fully	 loaded.	 After	 several	 trials	 set	β 	to	 0.064.	 Other	 parameters	 are	 set	 as	 shown	 in	 the	
previous	section.	When	the	unit	carbon	emission	cost	is	0.25	kg/yuan.	The	results	of	customer	
clustering	are	shown	in	Table	11.	The	optimal	path	is	shown	in	Table	12	and	Figure	12.	
	

Table	10.	Customer	locations,	demands,	and	time	windows	for	case	study	2	

Customers	 X(km)	 Y(km)	 Demands(t)	
Time	windows	

Service	time	
ሾTୣ , T୪ሿ	 ሾTୣ ୣ, T୪୪ሿ	

1	 14.1	 14.4	 0.6	 10:30–11:00	 9:30–12:00	 0.17	
2	 25	 15	 0.4	 10:00–10:30	 9:00–11:30	 0.11	
3	 17.2	 15.8	 0.9	 10:30–11:00	 9:30–12:00	 0.25	
4	 12.6	 11.8	 0.9	 10:00–10:30	 9:00–11:30	 0.25	
5	 11.6	 16.1	 1.3	 10:30–11:00	 9:30–12:00	 0.36	
6	 13.3	 18.9	 0.6	 11:00–11:30	 10:00–12:30	 0.17	
7	 14.45	 11.1	 0.4	 10:30–11:00	 9:30–12:00	 0.11	
8	 7.1	 21.4	 1.2	 10:00–10:30	 9:00–11:30	 0.33	
9	 1.2	 25.7	 0.6	 11:00–11:30	 10:00–12:30	 0.17	
10	 18.7	 12.5	 1.2	 10:00–10:30	 9:00–11:30	 0.33	
11	 15.47	 13.5	 1.2	 10:00–10:30	 9:00–11:30	 0.33	
12	 17.8	 16	 1	 10:00–10:30	 9:00–11:30	 0.28	
13	 14.64	 15.56	 0.2	 10:00–10:30	 9:00–11:30	 0.06	
14	 10.8	 14.05	 1	 11:00–11:30	 10:00–12:30	 0.28	
15	 11.5	 11.3	 0.5	 11:00–11:30	 10:00–12:30	 0.14	
16	 18.2	 16	 0.9	 11:00–11:30	 10:00–12:30	 0.25	
17	 6.2	 12.8	 1.3	 10:00–10:30	 9:00–11:30	 0.36	
18	 14.03	 9.5	 1.2	 10:00–10:30	 9:00–11:30	 0.33	
19	 16	 9.1	 0.5	 11:00–11:30	 10:00–12:30	 0.14	
20	 10.2	 18.2	 0.7	 10:00–10:30	 9:00–11:30	 0.19	
21	 16.3	 15.3	 0.3	 11:30–12:00	 10:30–13:00	 0.08	
22	 22.1	 6.9	 0.8	 10:30–11:00	 9:30–12:00	 0.22	
23	 5.8	 8.6	 0.3	 10:00–10:30	 9:00–11:30	 0.08	
24	 17.6	 14.14	 1.2	 11:00–11:30	 10:00–12:30	 0.33	
25	 11	 10.2	 0.2	 10:00–10:30	 9:00–11:30	 0.06	
26	 13.1	 15.8	 0.8	 11:00–11:30	 10:00–12:30	 0.22	
27	 17.1	 17	 0.6	 10:30–11:00	 9:30–12:00	 0.17	
28	 21.9	 6.6	 0.6	 10:00–10:30	 9:00–11:30	 0.17	

 
Table	11.	Distribution	center	and	customer	service	point	of	case	study	2	

Depots	 X(km)	 Y(km)	 Customers	
C1	 12.2	 23.6	 5,6,8,9,13,14,20,26	
C2	 25	 17.7	 2,3,12,16,27	
C3	 2	 2.1	 17,23	
C4	 18	 7.5	 1,4,7,10,11,15,18,19,21,22,24,25,28	
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Table	12.	The	optimal	distribution	paths	when	carbon	tax	is	0.25	
Number	 Route	 Total	Costs	 Carbon	emissions	costs	

1	 C1‐‐>13‐‐>5‐‐>C1	 299.67	 17.29	
2	 C1‐‐>8‐‐>20‐‐>C1	 268.16	 15.51	
3	 C1‐‐>26‐‐>14‐‐>C1	 283.85	 18.67	
4	 C1‐‐>6‐‐>9‐‐>C1	 310.78	 21.73	
5	 C2‐‐>2‐‐>12‐‐>27‐‐>C2	 281.99	 18.58	
6	 C2‐‐>3‐‐>16‐‐>C2	 282.92	 15.95	
7	 C3‐‐>23‐‐>17‐‐>C3	 291.36	 19.93	
8	 C4‐‐>25‐‐>11‐‐>1‐‐>C4	 295.24	 22.70	
9	 C4‐‐>28‐‐>4‐‐>15‐‐>C4	 320.97	 22.42	
10	 C4‐‐>18‐‐>22‐‐>C4	 275.36	 16.92	
11	 C4‐‐>10‐‐>21‐‐>7‐‐>C4	 343.65	 16.96	
12	 C4‐‐>19‐‐>24‐‐>C4	 261.52	 13.65	
Total	 	 3515.47	 220.31	

 
Figure	12.	The	optimal	distribution	paths	when	carbon	tax	is	0.25	

 
Table	13.	The	results	of	a	comparative	test	in	which	the	carbon	price	changes	

Carbon	price	
(RMB/kg)	

Carbon	emissions	
(kg)	

Total	costs	
(RMB)	

Carbon	
costs(RMB)	

Carbon	cost/Total	
costs(%)	

0.25	 220.31	 3515.47	 55.08	 1.57	
0.5	 208.26	 3555.25	 104.13	 2.93	
0.75	 207.73	 3617.50	 155.80	 4.31	
1	 207.73	 3668.46	 207.73	 5.66	
2	 207.73	 3895.04	 415.46	 10.67	
3	 207.72	 4084.89	 623.16	 15.26	
4	 208.00	 4315.27	 832.00	 19.28	
5	 205.46	 4490.54	 1027.30	 22.88	
6	 205.27	 4695.63	 1231.62	 26.23	
7	 204.68	 4900.73	 1432.76	 29.24	
8	 204.68	 5105.42	 1637.44	 32.07	
9	 205.45	 5336.06	 1849.05	 34.65	
10	 205.45	 5517.84	 2054.50	 37.23	
20	 201.16	 7556.12	 4023.20	 53.24	
30	 192.45	 9582.77	 5773.50	 60.25	
40	 192.45	 11507.32	 7698.00	 66.90	
50	 192.45	 13431.88	 9622.50	 71.64	
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Based	on	the	data	analysis,	we	get	the	curve	of	carbon	emissions,	carbon	emission	costs	and	
total	cost	under	different	carbon	tax.	Table	13	shows	the	results	of	a	comparative	test	in	
which	the	carbon	price	changes.	

 

 
Figure	13.	The	change	of	carbon	emissions	under	different	carbon	tax	

	

 
Figure	14.	The	change	of	carbon	emission	costs	and	total	cost	under	different	carbon	tax	

	
According	to	Table	13	,Figure	13	and	Figure	14,	the	carbon	emissions	were	reduced	faster	in	
the	 interval	 of	 [0.25,0.75]	with	a	 total	 reduction	of	12.58	kg,	more	 slowly	 in	 the	 interval	 of	
[0.75,4],	2.54	kg	in	the	interval	of	[4,5],	and	basically	remained	the	same	in	the	interval	of	[5,10].	
When	the	carbon	price	jumps	to	the	[30,50]	range,	the	carbon	emissions	remain	more	or	less	
the	same.	We	can	draw	the	following	inference.	
Inference	I:	The	cost	of	carbon	emissions	and	the	total	cost	of	distribution	increase	as	the	price	
of	the	carbon	tax	increases.	
Inference	II:	When	the	carbon	tax	exceeds	the	critical	point,	the	change	of	the	carbon	tax	has	no	
impact	on	the	distribution	route	planning,	nor	does	it	have	any	impact	on	carbon	emissions.		
Inference	III:	As	the	carbon	tax	increases,	carbon	emissions	gradually	decrease.	
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In	the	case	of	this	article,	when	Cୡ	increases	in	[0.25,50],	the	carbon	emission	cost	and	total	cost	
also	 change	 with	 the	 increase	 of	Cୡ .	 Obviously,	 as	 shown	 in	 the	 Table	 13	 and	 Figure	 14,	
Inference	I	is	correct.	
According	to	Figure	13,	we	can	conclude	that	in	this	example,	the	critical	point	is	30.	When	Cୡ ൒
30,	carbon	emissions	will	not	decrease	with	the	increase	of	carbon	tax.	We	set	Cୡ	for	six	groups	
of	experiments	to	35,	40,	45,	......,	and	60.	Each	group	of	data	is	brought	into	the	model	and	solved	
ten	 times,	 and	 then	 the	 optimal	 solution	 with	 the	 optimal	 fitness	 value	 and	 the	 optimal	
distribution	path	in	each	group	can	be	selected.	The	distribution	paths	of	the	ten	sets	of	data	
are	the	same,	and	the	optimal	distribution	path	is	proved	to	be	constant.	The	distribution	paths	
are	shown	in	the	Table	14	and	Figure	15.	As	the	carbon	tax	price	increases,	the	cost	of	carbon	
emissions	becomes	a	progressively	larger	share	of	the	total	cost.	When	the	carbon	tax	price	is	
30,	 the	 carbon	 emission	 cost	 accounts	 for	 60.25%	 of	 the	 total	 cost,	 which	 is	 the	 largest	
proportion	of	all	costs.	Hence,	when	the	carbon	tax	price	is	30,	the	distribution	path	has	the	
lowest	carbon	emission	and	can	no	longer	be	optimized.	Inference	II	is	correct.	
	

Table	14.	The	optimal	distribution	paths	when	carbon	tax	is	greater	than	30	
Number	 Route	

1	 C1‐‐>8‐‐>9‐‐>C1	
2	 C1‐‐>20‐‐>5‐‐>C1	
3	 C1‐‐>26‐‐>13‐‐>14‐‐>C1	
4	 C1‐‐>6‐‐>C1	
5	 C2‐‐>2‐‐>12‐‐>27‐‐>C2	
6	 C2‐‐>16‐‐>3‐‐>C2	
7	 C3‐‐>23‐‐>17‐‐>C3	
8	 C4‐‐>7‐‐>4‐‐>15‐‐>25‐‐>C4	
9	 C4‐‐>11‐‐>>1‐‐>C4	
10	 C4‐‐>28‐‐>22‐‐>C4	
11	 C4‐‐>18‐‐>19‐‐>C4	
12	 C4‐‐>24‐‐>21‐‐>C4	
13	 C4‐‐>10‐‐>C4	

 
Figure	15.	The	optimal	distribution	paths	when	carbon	tax	is	greater	than	30	
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According	to	Figure	13	and	Inference	II,	carbon	emissions	decrease	when	the	carbon	price	is	in	
the	range	of	[0.25,30],	and	at	the	carbon	tax	price	of	30,	carbon	emissions	reach	the	minimum	
value	and	will	not	decrease	further.	We	set	Cୡ	for	six	groups	of	experiments	to	0.05,	0.1,	0.15,	
0.2,	0.3	and	0.4.	Each	set	of	data	is	brought	into	the	model	and	solved	10	times	to	select	the	
optimal	solution	and	the	optimal	allocation	path	with	the	optimal	fitness	value	in	each	set.	The	
carbon	emissions	and	total	costs	under	different	carbon	taxes	are	shown	in	Table	15.	When	the	
carbon	 price	 is	 in	 the	 range	 of	 [0.05,0.1]	 and	 [0.15,0.25],	 the	 carbon	 emissions	 increase,	
especially	 in	 the	 range	 of	 [0.15,0.25]	 with	 a	 faster	 growth.	 Carbon	 emissions	 continue	 to	
decrease	when	the	carbon	price	is	in	the	[0.1,0.15]	and	[0.25,0.4]	intervals.	Inference	III	is	not	
correct.	From	this,	we	can	conclude	that	when	the	carbon	tax	price	is	below	0.25,	the	carbon	
tax	cost	has	less	impact	on	the	total	cost	of	distribution	and	cannot	reduce	carbon	emissions.	
When	the	carbon	tax	price	is	greater	than	0.25,	the	carbon	emissions	gradually	decrease	as	the	
carbon	tax	price	increases.	When	the	carbon	tax	price	is	0.05,	0.1,	0.2	and	0.4,	the	distribution	
path	is	shown	in	Table	16‐Table	19	and	Figure	16‐Figure	19.	
	

Table	15.	Results	of	comparative	tests	of	carbon	prices	from	0.05	to	0.4	
Carbon	price	
(RMB/kg)	

Carbon	emissions	
(kg)	

Total	costs	(RMB) Carbon	costs(RMB)
Carbon	cost/Total	

costs(%)	
0.05	 213.33	 3466.68	 10.67	 0.31	
0.1	 215.63	 3472.64	 21.56	 0.62	
0.15	 213.33	 3488.01	 32.00	 0.92	
0.2	 217.81	 3491.20	 43.56	 1.25	
0.25	 220.31	 3515.47	 55.08	 1.57	
0.3	 217.81	 3516.98	 65.34	 1.85	
0.4	 208.26	 3544.80	 83.30	 2.35	

 

Table	16.	The	optimal	distribution	paths	when	carbon	tax	is	0.05	
Number	 Route	

1	 C1‐‐>8‐‐>20‐‐>C1	
2	 C1‐‐>13‐‐>5‐‐>C1	
3	 C1‐‐>26‐‐>14‐‐>C1	
4	 C1‐‐>6‐‐>9‐‐>C1	
5	 C2‐‐>2‐‐>12‐‐>27‐‐>C2	
6	 C2‐‐>3‐‐>16‐‐>C2	
7	 C3‐‐>23‐‐>17‐‐>C3	
8	 C4‐‐>11>22‐‐>C4	
9	 C4‐‐>7‐‐>4‐‐>15‐‐>C4	
10	 C4‐‐>10‐‐>28‐‐>C4	
11	 C4‐‐>18‐‐>25‐‐>1‐‐>C4	
12	 C4‐‐>19‐‐>21‐‐>24‐‐>C4	

 
Figure	16.	The	optimal	distribution	paths	when	carbon	tax	is	0.05	
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Table	17.	The	optimal	distribution	paths	when	carbon	tax	is	0.1	
Number	 Route	

1	 C1‐‐>8‐‐>20‐‐>C1	
2	 C1‐‐>13‐‐>5‐‐>C1	
3	 C1‐‐>26‐‐>14‐‐>C1	
4	 C1‐‐>6‐‐>9‐‐>C1	
5	 C2‐‐>2‐‐>12‐‐>27‐‐>C2	
6	 C2‐‐>3‐‐>16‐‐>C2	
7	 C3‐‐>23‐‐>17‐‐>C3	
8	 C4‐‐>19‐‐>24‐‐>C4	
9	 C4‐‐>10‐‐>22‐‐>C4	
10	 C4‐‐>18‐‐>25‐‐>1‐‐>C4	
11	 C4‐‐>28‐‐>4‐‐>15‐‐>C4	
12	 C4‐‐>11‐‐>21‐‐>7‐‐>C4	

 
Figure	17.	The	optimal	distribution	paths	when	carbon	tax	is	0.1	

	
Table	18.	The	optimal	distribution	paths	when	carbon	tax	is	0.2	

Number	 Route	
1	 C1‐‐>26‐‐>14‐‐>C1	
2	 C1‐‐>8‐‐>20‐‐>C1	
3	 C1‐‐>13‐‐>5‐‐>C1	
4	 C1‐‐>6‐‐>9‐‐>C1	
5	 C2‐‐>2‐‐>12‐‐>27‐‐>C2	
6	 C2‐‐>3‐‐>16‐‐>C2	
7	 C3‐‐>23‐‐>17‐‐>C3	
8	 C4‐‐>28‐‐>25‐‐>18‐‐>C4	
9	 C4‐‐>11‐‐>21‐‐>7‐‐>C4	
10	 C4‐‐>1‐‐>4‐‐>15‐‐>C4	
11	 C4‐‐>19‐‐>24‐‐>C4	
12	 C4‐‐>10‐‐>22‐‐>C4	
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Figure	18.	The	optimal	distribution	paths	when	carbon	tax	is	0.2	

	
Table	19.	The	optimal	distribution	paths	when	carbon	tax	is	0.4	

Number	 Route	
1	 C1‐‐>20‐‐>13‐‐>C1	
2	 C1‐‐>8‐‐>9‐‐>C1	
3	 C1‐‐>26‐‐>14‐‐>C1	
4	 C1‐‐>5‐‐>6‐‐>C1	
5	 C2‐‐>2‐‐>12‐‐>27‐‐>C2	
6	 C2‐‐>3‐‐>16‐‐>C2	
7	 C3‐‐>23‐‐>17‐‐>C3	
8	 C4‐‐>10‐‐>28‐‐>C4	
9	 C4‐‐>11‐‐>21‐‐>19‐‐>C4	
10	 C4‐‐>7‐‐>4‐‐>15‐‐>C4	
11	 C4‐‐>22‐‐>24‐‐>C4	
12	 C4‐‐>18‐‐>25‐‐>1‐‐>C4	

 
Figure	19.	The	optimal	distribution	paths	when	carbon	tax	is	0.4	
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The	results	show	that	when	the	carbon	tax	price	is	too	low	(Cୡ ൏ 0.25),	the	proportion	of	carbon	
emission	cost	is	too	low,	and	carbon	emission	may	increase	as	the	carbon	tax	price	increases.	
When	the	carbon	tax	price	is	too	high	(Cୡ ൐ 30),	carbon	emissions	are	already	the	lowest	and	
cannot	be	further	optimized	because	the	proportion	of	carbon	emission	cost	is	too	high.	When	
the	 carbon	 tax	 price	 gradually	 increases	 in	 the	 interval	 [0.25,30],	 the	 cold	 chain	 logistics	
enterprises	can	reduce	the	total	cost	of	distribution	by	optimizing	the	path,	and	then	reduce	the	
cost	pressure	due	to	the	rising	carbon	tax.	Objectively,	it	is	also	able	to	reduce	carbon	emissions	
and	has	better	environmental	benefits.	

6. Discussion	and	Managerial	Implications	

In	this	study,	the	redistribution	of	customers	through	a	resource	sharing	strategy	significantly	
optimized	the	cold	chain	logistics	network	and	reduced	logistics	operation	costs	and	carbon	
emissions.	The	impact	of	different	carbon	tax	prices	on	distribution	paths	is	also	investigated.	
As	a	result,	the	following	management	insights	were	obtained	from	this	study.	
(1) 	For	 cold	 chain	 logistics	 companies,	 they	must	place	greater	 emphasis	on	 reducing	 total	
distribution	 costs	 and	 carbon	 emissions.	 By	 introducing	 resource	 sharing	 strategies	 and	
enhancing	 inter‐firm	 cooperation	 to	 share	 customer	 information,	 facility	 capacity	 and	
transportation	resources,	resource	utilization	can	be	amplified	to	significantly	reduce	delivery	
distances,	carbon	emissions	and	total	costs,	and	improve	logistics	operational	efficiency.	
(2) Cold	chain	logistics	companies	need	to	choose	quality	refrigeration	equipment	to	reduce	
quality	losses	and	ensure	their	carbon	footprint	is	in	line	with	government	policies.	On	the	one	
hand,	the	cost	of	quality	loss	represents	a	portion	of	the	total	cost	of	logistics,	so	maintaining	
constant	temperature,	quality	and	freshness	has	naturally	become	a	top	priority	to	reduce	the	
cost	of	product	damage.	However,	some	refrigerated	truck	equipment	is	relatively	outdated,	
which	can	lead	to	rapid	deterioration	of	fresh	produce	during	transportation.	On	the	other	hand,	
the	refrigerated	truck	refrigeration	process	will	produce	a	large	amount	of	carbon	dioxide,	and	
with	the	introduction	of	the	national	carbon	tax	policy,	cold	chain	logistics	companies	should	
seriously	consider	the	carbon	tax	policy,	 improve	environmental	awareness,	and	 implement	
new	 technologies	 to	 replace	 the	 current	 more	 backward	 refrigeration	 equipment	 and	
transportation	equipment.	
(3) For	the	government,	first,	it	can	guide	the	development	of	cold	chain	logistics	through	good	
program	 policies,	 such	 as	 the	 implementation	 of	 resource	 sharing	 policies	 to	 promote	 cold	
chain	 logistics	 enterprises	 to	 integrate	 resources	 and	 common	 distribution.	 Second,	 the	
government	 can	 invest	 in	 the	 development	 of	 cold	 chain	 logistics	 equipment,	 such	 as	 the	
development	and	production	of	new	energy	refrigerated	vehicles	instead	of	traditional	diesel	
vehicles.	 Third,	 the	 government	 can	 set	 an	 appropriate	 carbon	 tax	 price	 to	 reduce	 carbon	
emissions,	for	example,	 in	this	case,	the	carbon	tax	price	is	set	at	0.75,	which	can	effectively	
reduce	carbon	emissions.	

7. Conclusions	and	Future	Work	

At	 present,	 the	 environmental	 pollution	 problem	 is	 becoming	more	 and	more	 serious,	 and	
optimizing	 the	 cold	 chain	 logistics	 distribution	 path	 can	 realize	 both	 environmental	 and	
economic	benefits.	This	study	proposes	the	GCCLVRP‐RS	model	to	minimize	the	total	cost	and	
reduce	carbon	emissions.	 It	has	 three	contributions	 to	 theory	and	 industry.	First,	 this	study	
contributes	to	the	VRP	model.	In	previous	VRP	models	for	cold	chain	logistics,	the	construction	
of	total	costs	is	not	comprehensive.	the	GCCLVRP‐RS	model	considers	six	different	costs	(fixed	
costs,	transportation	costs,	damage	costs,	refrigeration	costs,	penalty	costs,	and	carbon	costs)	
to	 extend	 the	 VRP	 model	 to	 reflect	 the	 characteristics	 of	 the	 cold	 chain	 logistics	 industry.	
Secondly,	the	cold	chain	logistics	and	distribution	enterprises	are	united	through	the	resource	
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sharing	 strategy,	 and	 the	 spatial‐temporal	 distance	 is	 proposed	 to	 cluster	 the	 customers,	
enterprises	work	together	to	complete	the	distribution	tasks.	The	research	results	prove	that	
the	resource	sharing	model	can	effectively	reduce	the	total	cost	and	carbon	emission.	GCCLVRP‐
RS	not	only	fills	the	gap	of	insufficient	research	on	resource	sharing,	but	also	fits	into	the	sharing	
economy	 and	 provides	 reasonable	 suggestions	 for	 the	 government.	 Third,	 the	 carbon	 tax	
mechanism	is	introduced	into	the	cold	chain	logistics	industry.	The	trends	of	carbon	emission	
and	 total	 cost	 of	 distribution	 under	 different	 carbon	 taxes	 are	 analyzed.	 The	 experimental	
results	 of	 this	 paper	 provide	 management	 suggestions	 for	 the	 government	 and	 logistics	
enterprises	to	effectively	balance	the	economic	and	environmental	costs	in	distribution.	
The	research	in	this	paper	has	important	practical	significance	for	the	shared	distribution	mode	
of	cold	chain	logistics	resources	under	the	carbon	tax	mechanism.	The	research	results	have	
important	reference	value	for	the	formulation	of	energy‐saving	and	emission	reduction	policies	
in	China's	cold	chain	logistics	and	transportation	industry.	There	are	several	limitations	that	
guide	the	future	research	direction.	This	paper	assumes	that	all	customer	point	information	is	
known,	and	does	not	consider	changes	in	customer	point	information	during	transportation,	
such	as	new	orders	or	canceled	orders.	In	addition,	this	paper	assumes	that	the	speed	of	vehicle	
transportation	is	fixed	and	does	not	consider	situations	such	as	traffic	congestion.	Therefore,	
the	dynamics	in	the	distribution	process	is	a	further	research	direction.	
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