Research on Calculation and Driving Factors of Production Efficiency of Smart Agriculture under the Background of Rural Revitalization

-- Take Anhui Province as an Example

Shengnan Li¹, Hang Zhou² and Xiaonan Zeng^{1,*}

¹School of Finance and public administration, Anhui University of Finance and Economics, Bengbu 233030, China

²School of Finance, Anhui University of Finance and Economics University, Bengbu 233030, China

Abstract

Smart agriculture has promoted the rapid development of China's traditional agriculture. Our team conducted Social Research on the rice shrimp co cultivation demonstration base in Quanjiao County, Anhui Province during the holiday. After that, we collect the indicators related to agricultural production efficiency of Intelligent Agriculture in Anhui Province, then analyze the main factors affecting agricultural production efficiency, and construct the evaluation model of intelligent agricultural production efficiency, the real value of agricultural production efficiency is calculated, and the ways to improve agricultural production efficiency are further put forward. Finally, find ways to improve the production efficiency of smart agriculture, so as to promote the optimization and promotion of smart agriculture application.

Keywords

Smart Agriculture; Production Efficiency; Evaluation Model.

1. Research Background And Significance

1.1. Research Background

Smart agriculture is a new agricultural development mode with the deep integration of modern information technology such as Internet of things and big data with agriculture. It is an important step in implementing the Rural Revitalization Strategy, a booster for the transformation and upgrading of China's traditional agriculture, and an important way to improve agricultural production efficiency and realize the large-scale and industrialized production of new agriculture. At present, China's intelligent agricultural technology has been applied in many fields, such as agricultural sensors, plant protection UAVs, agricultural robots, intelligent water-saving irrigation and so on.

1.2. Research Significance

While smart agriculture promotes the high-quality development of agricultural production, how to accurately measure the actual development level of smart agriculture is a topic of great concern to the government, enterprises and farmers. Smart agriculture production efficiency is an important indicator to measure the development level of smart agriculture. At the same time, it can also reflect the development level of science, technology and economy. Smart agriculture can also protect the environment, save resources and promote green and sustainable economic development. Therefore, paying attention to the improvement of production efficiency of smart

agriculture is of great significance to improve the development mode of smart agriculture and realize green and sustainable economic growth.

2. Construction of Measurement Model of Production Efficiency of Intelligent Agriculture

2.1. Research Methods

2.1.1. Establishment of Evaluation Index System

According to the actual situation of the development of smart agriculture in Anhui Province, following the principles of systematicness, preciseness, representativeness and practicality, and considering the authenticity and availability of data, this paper constructs the evaluation index system of smart agricultural production efficiency from three levels. The first layer is the target layer, which takes the production efficiency of intelligent agriculture as the evaluation target; The second layer is the criterion layer, including four aspects of the improvement of agricultural production efficiency by smart agriculture, namely infrastructure, production conditions, talent technology and output benefits; The third layer is the 18 indicators corresponding to the four criteria layers, as shown in Table 1.

Target layer	Criterion layer	Index layer	Index code	Index Interpretation
		Proportion of fixed asset investment in research and scientific research in technical service industry(%)		Fixed assets investment in technical services and scientific research / total investment in fixed assets
	Smart agricultural infrastructure	Proportion of fixed asset investment in information transmission, software and information technology services(%)	Fixed assets investment in information transmission, software and information technology services / total fixed assets investment	
		Proportion of fixed asset investment in transportation, warehousing and postal industry(%)	C13	Total fixed assets / fixed investment in transportation, warehousing and postal industry
T , 11. ,		Proportion of tractor tillage area(%)	C21	Machine cultivated area / crop sown area
Intelligent agricultural production		Proportion of machine sowing area(%)	C22	Machine sown area / crop sown area
efficiency		Proportion of machine harvesting area(%)	C23	Machine harvest area / crop sowing area
	Intelligent agricultural production conditions	Average rural power consumption per person (kW / person)	C24	Rural electricity consumption / rural population
		Total power of agricultural machinery per unit cultivated land area (w / HA)	C25	Total power of agricultural machinery / cultivated land area
		Fertilizer application per unit sowing area (kg / HA)		Fertilizer application amount / crop sowing area
		Effective irrigation rate of cultivated land (%)	C27	Cultivated land effective irrigation area / cultivated land area

Table 1. Evaluation index system of production efficiency of smart agriculture

ISSN: 2688-9323

	Intelligent agricultural talents and	Proportion of local financial expenditure on Education (%)	C31	Local financial expenditure on education / total financial expenditure
technology		Proportion of service personnel engaged in information transmission, information technology and software (%)	C32	Service personnel / total employees engaged in information transmission, information technology and software
		Proportion of agricultural science and technology expenditure (%)	C33	Agricultural science and technology expenditure / total financial support for agriculture
		Grain yield per unit cultivated area (kg / HA)	C41	Total grain output / cultivated land area
		Agricultural productivity (yuan / person)	C42	Total agricultural output value / total agricultural population
		Land productivity (yuan / HA)	C43	Total agricultural output value / cultivated land area
	Output benefit of smart agriculture	Proportion of output value of agriculture, forestry, animal husbandry and fishery (%)	C44	Output value of agriculture, forestry, animal husbandry and fishery / regional GDP
		Proportion of output value of agricultural service industry (%)	C45	Total output value of Agricultural Services / agriculture, forestry, animal husbandry and fishery

2.1.2. Index Weighting Method

In order to prevent the weight determined by the subjective method from being untrue and inaccurate, the entropy method is used to calculate the index weight. Entropy method is a method to calculate the information entropy of the index and then calculate the index weight according to the principle of information theory. There are four main steps:

(1) After the decision matrix $X = (x_{ij})_{m \times n}$ is standardized, $Y = (y_{ij})_{m \times n}$ is obtained and normalized:

$$P_{ij}=y_{ij}/\sum_{i=1}^{m}y_{ij}$$
 ($1 \le i \le m, 1 \le j \le n$)

(2) Use the following formula to calculate the entropy of the j-th index(e_j):

$$e_j = -k \cdot \sum_{i=1}^{m} P_{ij} \ln P_{ij} (1 \le i \le n)$$

among, k>0, e_j≥0, Take k=1/lnm

(3) Use the following formula to calculate the difference coefficient of the j-th index(g_i):

$$g_j=1-e_j(1\leq j\leq n)$$

(4) The weight (WJ) of the j-th index is obtained by normalizing g_j

$$W_j = g_j / \sum_{j=1}^{n_{j=1}} g_j$$

2.1.3. Design of Comprehensive Evaluation Model

The production efficiency of smart agriculture is measured by calculating the sum of the product of weight coefficient and standardized value. The comprehensive evaluation model of production efficiency of smart agriculture is constructed as follows:

$$AT_{i} = \sum_{i=1}^{n} W_{i}B_{i}$$
$$B_{i} = \sum_{j=1}^{m} W_{ij}C_{ij}$$

Among them, AT_i is the weighted total score of intelligent agricultural production efficiency, n is the number of indicators in the second layer, W_i is the weight of indicators in the second layer, B_i is the index in the second layer, m is the number of indicators in the third layer, W_{ij} is the weight of indicators in the third layer, and C_{ij} is the standardized value of the j-th index.

2.2. Data Acquisition and Processing

2.2.1. Data Acquisition

According to the statistical yearbook of 2015-2020 compiled by Anhui Provincial Bureau of statistics, we selected the data from 2014 to 2019 as the original values of various indicators, some of which are missing and replaced by the estimated values obtained by linear regression method, as shown in Table 2.

			ovince from 20	T		
	2014	2015	2016	2017	2018	2019
C11	1.03	1.09	1.29	0.96	1.00	0.81
C12	0.71	1.08	1.12	0.94	0.72	0.61
C13	5.17	6.13	6.88	6.98	6.38	6.86
C21	48.25	47.91	49.55	85.81	85.39	86.20
C22	52.40	55.91	58.64	62.18	65.56	67.99
C23	69.75	71.96	74.02	78.25	82.65	83.70
C24	275.72	290.23	301.45	318.79	336.06	351.74
C25	1.08	1.12	1.17	1.08	1.11	1.13
C26	381.63	378.40	367.69	359.99	355.43	339.35
C27	73.71	74.88	75.56	76.77	77.10	77.93
C31	15.93	16.35	16.49	16.36	16.94	16.53
C32	1.41	1.49	1.55	1.59	1.58	1.59
C33	0.62	0.92	0.61	0.60	0.66	0.68
C41	5812.78	6020.65	5818.83	5924.90	6808.16	6896.30
C42	7893.80	8129.82	8683.35	8797.51	8685.89	9599.42
C43	71875.94	74716.12	79279.01	80581.84	79397.61	87813.61
C44	17.96	17.62	16.78	15.04	12.96	13.11
C45	4.25	4.37	5.19	5.60	5.66	5.72

Table 2. Original data of production efficiency indicators of smart agriculture in Anhui
Province from 2014 to 2019

2.2.2. Standardized Treatment

The data is standardized by the root square method, and the formula is as follows:

$$y_{ij}=a_{ij}/\sqrt{\sum_{i=1}^{n}a_{ij}^{2}}(1 \le i \le n)$$

The data after standardization is shown in Table 3.

Province from 2014 to 2019							
	2014	2015	2016	2017	2018	2019	
C11	0.4057	0.4266	0.5065	0.3778	0.3917	0.3175	
C12	0.3271	0.4987	0.5168	0.4339	0.3307	0.2822	
C13	0.3281	0.3893	0.4368	0.4429	0.4052	0.4355	
C21	0.2825	0.2805	0.2902	0.5025	0.5000	0.5048	
C22	0.3525	0.3761	0.3945	0.4183	0.4410	0.4574	
C23	0.3703	0.3820	0.3930	0.4154	0.4388	0.4443	
C24	0.3591	0.3780	0.3926	0.4152	0.4377	0.4582	
C25	0.3964	0.4098	0.4279	0.3937	0.4068	0.4140	
C26	0.4280	0.4244	0.4124	0.4037	0.3986	0.3806	
C27	0.3959	0.4022	0.4058	0.4124	0.4141	0.4186	
C31	0.3957	0.4061	0.4096	0.4063	0.4207	0.4106	
C32	0.3759	0.3959	0.4118	0.4218	0.4187	0.4234	
C33	0.3673	0.5423	0.3604	0.3567	0.3892	0.4029	
C41	0.3809	0.3945	0.3813	0.3882	0.4461	0.4519	
C42	0.3726	0.3838	0.4099	0.4153	0.4100	0.4531	
C43	0.3710	0.3856	0.4091	0.4159	0.4097	0.4532	
C44	0.4667	0.4579	0.4361	0.3908	0.3368	0.3408	
C45	0.3360	0.3454	0.4097	0.4426	0.4473	0.4517	

Table 3. Standardized data of production efficiency indicators of smart agriculture in AnhuiProvince from 2014 to 2019

2.3. Index Weighting

The entropy method is used to assign the index proportion. After data calculation, the final determination of the weight of the intelligent agricultural production efficiency evaluation index system is shown in Table 4.

2.4. Secondary Index Weighted Index

Using the index proportion obtained by entropy method, the weighted index of index elements of each index layer from 2014 to 2019 is calculated, as shown in Table 5.

Comprehensive index layer (y)	Criterion layer (b)	weight	Indicator layer (c)	weight
			Proportion of fixed asset investment in scientific research and technical services(C11)	0.0547
	Smart agricultural infrastructure (B1)	0.1605	Proportion of fixed assets invested in information transmission, software and information technology services(C12)	0.0497
			Proportion of fixed asset investment in transportation, warehousing and postal industry(C13)	0.0562
			Proportion of tractor tillage area(C21)	0.0454
			Proportion of machine sowing area(C22)	0.0565
			Proportion of machine harvesting area(C23)	0.0570
	Production conditions of smart	0.3885	Average per capita electricity consumption in rural areas(C24)	0.0567
Smart agricultural production efficiency (Y)	agriculture (B2)		Total power of agricultural machinery per unit cultivated land area(C25)	0.0576
			Amount of chemical fertilizer applied per unit sowing area(C26)	0.0575
			Effective irrigation rate of cultivated land(C27)	0.0577
	Intelligent agricultural technology talents (B3)	0.1692	Proportion of local financial expenditure on Education(C31)	0.0577
			Proportion of personnel engaged in information transmission, information technology and software services(C32)	0.0575
			Proportion of agricultural science and technology expenditure(C33)	0.0540
			Grain yield per unit cultivated area(C41)	0.0569
			Agricultural productivity(C42)	0.0571
	Output benefit of		Land productivity(C43)	0.0571
	smart agriculture (B4)	0.2818	Proportion of output value of agriculture, forestry, animal husbandry and fishery(C44)	0.0551
			Proportion of output value of agricultural service industry(C45)	0.0555

Table 4. Weight determination diagram of intelligent agricultural production efficiencyevaluation index system

r	Province from 2014 to 2019						
	2014	2015	2016	2017	2018	2019	
C11	0.0222	0.0233	0.0277	0.0207	0.0214	0.0174	
C12	0.0162	0.0248	0.0257	0.0215	0.0164	0.0140	
C13	0.0184	0.0219	0.0245	0.0249	0.0228	0.0245	
C21	0.0128	0.0127	0.0132	0.0228	0.0227	0.0229	
C22	0.0199	0.0212	0.0223	0.0236	0.0249	0.0258	
C23	0.0211	0.0218	0.0224	0.0237	0.0250	0.0253	
C24	0.0203	0.0214	0.0222	0.0235	0.0248	0.0260	
C25	0.0228	0.0236	0.0247	0.0227	0.0235	0.0239	
C26	0.0246	0.0244	0.0237	0.0232	0.0229	0.0219	
C27	0.0228	0.0232	0.0234	0.0238	0.0239	0.0242	
C31	0.0228	0.0234	0.0236	0.0234	0.0243	0.0237	
C32	0.0216	0.0228	0.0237	0.0242	0.0241	0.0243	
C33	0.0198	0.0293	0.0195	0.0193	0.0210	0.0218	
C41	0.0217	0.0225	0.0217	0.0221	0.0254	0.0257	
C42	0.0213	0.0219	0.0234	0.0237	0.0234	0.0259	
C43	0.0212	0.0220	0.0234	0.0238	0.0234	0.0259	
C44	0.0257	0.0252	0.0240	0.0215	0.0185	0.0188	
C45	0.0187	0.0192	0.0227	0.0246	0.0248	0.0251	

Table 5. Weighted index of production efficiency index layer of smart agriculture in AnhuiProvince from 2014 to 2019

2.5. Intelligent Agricultural Production Efficiency Index

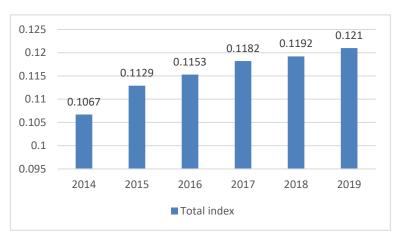
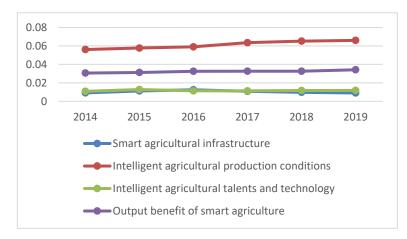

According to the weight and measurement analysis model of each main index calculated by the previous summation method, then calculate the comprehensive index of each index, and further calculate the production efficiency index of Intelligent Agriculture in Anhui Province from 2014 to 2019, as shown in Table 6.

Table 6. Production efficiency index of smart agriculture in Anhui Province from 2014 to
2019


		Criterion layer						
Year	Total index	Smart agricultural infrastructure	Intelligent agricultural production conditions	Intelligent agricultural talents and technology	Output benefit of smart agriculture			
2014	0.1067	0.0091	0.0561	0.0109	0.0306			
2015	0.1129	0.0112	0.0577	0.0128	0.0312			
2016	0.1153	0.0125	0.0590	0.0113	0.0325			
2017	0.1182	0.0108	0.0635	0.0113	0.0326			
2018	0.1192	0.0097	0.0652	0.0117	0.0326			
2019	0.1210	0.0090	0.0660	0.0118	0.0342			

3. Evaluation of Measurement Results of Intelligent Agricultural Production Efficiency

According to Table 6 and Figure 1, the production efficiency of Intelligent Agriculture in Anhui Province has shown a stable upward trend in recent years, and the comprehensive index has increased from 0.1067 to 0.1210, but it is still in an immature stage. The future development needs the attention and promotion of the state.

Figure 1. Trend chart of comprehensive index of intelligent agricultural production efficiency in Anhui Province from 2014 to 2019

Figure 2. Trend chart of production efficiency criterion level index of smart agriculture in Anhui Province from 2014 to 2019

As can be seen from Figure 2, the production condition index showed an upward trend from 2014 to 2019, and its growth was more obvious than other indexes. Therefore, the production condition index is the main factor affecting the production efficiency of smart agriculture. At the same time, the talent technology index is at a low level and makes little contribution to the production efficiency of intelligent agriculture, indicating that the technical level of intelligent agricultural talents in Anhui province needs to be improved.

4. Suggestions on Improving Production Efficiency of Smart Agriculture

4.1. Realize the Maximum Utilization of Intelligent Agricultural Resources

To improve the production efficiency of smart agriculture, we must give full play to the role of smart agriculture in improving production conditions and maximize the development and

utilization of smart agricultural resources. First, use agricultural intelligent equipment to improve the level of agricultural mechanization. Secondly, we will vigorously develop intelligent agricultural equipment and agricultural robots, strive to promote the automation of agricultural operations, and realize effective fertilization and irrigation of farmland. Finally, we will vigorously develop Internet + agriculture and realize big data and scientific agricultural decision-making.

4.2. Improve the Technical Level of Intelligent Agricultural Talents

First, pay attention to the knowledge and cultural level of agricultural producers, which includes not only the theoretical knowledge of agricultural science, but also the learning of agricultural machinery and equipment and the ability to accept and apply agricultural information. Second, the government should increase subsidies to agricultural producers, make more and more people willing to engage in agricultural production, make agriculture a new industry, and change people's inherent ideas about traditional agriculture. Third, scientific research institutes should pay attention to the creation and invention of agricultural technology and agricultural machinery and equipment, combine science and technology with agricultural production, and make agricultural planting no longer a hard and tiring work.

5. Summary

Through the investigation of rice and shrimp demonstration base in Quanjiao County, Chuzhou City, Anhui Province, we have a general understanding of the development of Intelligent Agriculture in Anhui Province. Finally, through the analysis of the relevant influencing factors of agricultural production efficiency in Anhui Province, we establish the calculation and evaluation model of intelligent agricultural production efficiency in Anhui Province, and finally put forward some suggestions. The measurement of intelligent agricultural production efficiency has guiding significance for further improving the agricultural production level and Realizing Rural Revitalization in Anhui Province.

References

- [1] Deng Yi, Wang Na. Measurement of agricultural modernization development level and path selection from the perspective of Rural Revitalization -- Taking Gansu Province as an example [J]. Journal of Yunnan Agricultural University (SOCIAL SCIENCE), 2021,15 (06): 7-13.
- [2] LV Qixin, Zhu Jingjing, Xiao Qingtie, Wen Huanhuan, Han Bolun, Zheng Xinyu, Lin Ruiyu. Comprehensive evaluation of agricultural informatization level in Fujian Province [J]. Subtropical agricultural research, 2020,16 (01): 65-72. Doi: 10.13321/j.cnki.subtrop.agric.res.2020.01.012.
- [3] Han Meng. Research on the development of smart agriculture in Jilin Province [D]. Jilin University, 2020. Doi: 10.27162/d.cnki.gjlin.2020.007485.
- [4] Zhao Zhiqiang. Research on the construction and evaluation system of scientific and technological innovation capacity in Lianyungang [D]. Nanjing Forestry University, 2004.
- [5] Li Shuying. Research on new farmers' evaluation index system based on AHP method [J]. Guangdong agricultural science, 2009 (07): 5-9. Doi: 10.16768/j.issn.1004-874x.2009.07.109.
- [6] One belt, one road, [6] Zhang Yafei, Niu Jin. The coordinated development of logistics supply and demand system in the inland node city [J]. Journal of Yibin University, 2019,19 (01): 16-22. DOI: 10. 19504/j.cnki.issn1671-5365.2019.01.001.
- [7] Zhong Lina, Li Songbai. Comprehensive evaluation of the development level of agricultural modernization in Shaanxi Province [J]. Research on agricultural modernization, 2018,39 (01): 57-64. Doi: 10.13872/j.1000-0275.2017.0098.
- [8] Liu zewei. Study on stage characteristics and driving factors of spatial reconstruction of tourism rural areas [D]. Hebei University of economics and trade, 2021.

- [9] Zhang Bo. Research on the impact of China's informatization on the technological innovation efficiency of industrial enterprises [D]. Central University of Finance and economics, 2016.
- [10] He Xiaoguo. Research on the construction of agricultural modernization in Henan Province from the perspective of Marxism [D]. Henan University, 2020. Doi: 10.27114/d.cnki.ghnau.2020.000549.
- [11] Guo Xiaolan. Research on the path of sustainable development of urban agriculture in Chongqing [D]. Chongqing University of technology and industry, 2013.
- [12] Shi Hefeng. Study on urban agricultural development strategy in Yinzhou District, Ningbo [D]. Nanjing Forestry University, 2007.
- [13] Wu Mingyan. Research on Optimization of rural "three living spaces" in Yicheng city, Hubei Province from the perspective of agricultural modernization [D]. Huazhong University of science and technology, 2017.
- [14] Chen Quansheng. Steady growth requires steady investment [C] / / economic observation of China think tank (2012 ~ 2013), 2013:165-168.
- [15] Ju Yanhua, Yang Jun. research on the coordination of China's urbanization development [J]. Land and natural resources research, 2017 (06): 61-64. Doi: 10.16202/j.cnki.tnrs.2017.06.018.
- [16] He Yanbin. Cultivated land ecological security evaluation and obstacle factor diagnosis in Shandong Province [D]. Shandong Agricultural University, 2017.