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Abstract	

Based	 on	 Fractal	Market	 Hypothesis	 and	 the	 chaotic	 dynamics	 theory,	 the	 Swedish	
capital	markets	have	been	tested	by	Hurst	Exponent	and	the	largest	Lyapunov	Exponent	
which	show	the	Swedish	markets	have	fractal	and	chaotic	behavior.	It	is	helpful	to	find	a	
better	model	 to	 forecasting	 these	market,	ARIMA,	BP	neural	network	and	 the	hybrid	
mode	which	 combined	ARIMA	 and	BP	 (Backpropagating)	neural	network	model,	are	
basic	models	to	forecasting	these	markets.	The	results	show	the	hybrid	model	can	be	an	
effective	way	to	improve	forecasting	accuracy	than	the	ARIMA	and	BP	neural	network	
model.	
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1. Introduction		

The	world	is	not	orderly,	nature	is	not	orderly,	and	the	capital	markets	are	also	not	orderly.	
They	 contain	 fractal	 characteristics,	 chaotic	 behaviors	 and	 non‐linear,	 which	 make	 them	
extremely	 complex	and	unpredictable.	There	are	 some	of	 the	most	 challenging	problems	 in	
Capital	 markets	 are	 chaotic	 behaviors	 and	 non‐linear,	 complication	 and	 uncertainty,	
unexpected	booms	and	crashes.	A	number	of	people	are	trying	to	explain	these	problems	and	
understand	 how	 the	 capital	 flows	 and	 why.	 The	 E.	 Peters,	 1996	 proposed	 Fractal	 Market	
Hypothesis	(FMH).	Theorizes	that	“(1)	 in	 the	different	 time	horizons,	all	 investors	are	being	
included	 in	 the	 market	 stability	 and	 liquidity.	 (2)	 though	 the	 changing	 of	 the	 market	
information,	it	takes	time	for	investors	to	reflect	or	just	wait	for	more	information,	(3)	there	are	
some	information	maybe	can’t	reflect	the	market	price,	(4)	market	price	shows	the	long‐term	
memory	and	also	indicates	the	long‐term	economic	trends“	(E.	Peters,	1996).	In	the	hypothesis	
of	FMH,	the	market	is	non‐Gaussian	distribution	and	non‐stationary	process	which	means	the	
information	 have	 historical	 correlation	 exist,	 in	 other	 words,	 finance	 have	 a	 long	memory.	
Fractal	Market	 Hypothesis	 is	 different	 to	 Efficient	Market	 Hypothesis.	 The	 Efficient	Market	
Hypothesis	 state	 that:	 “(1)	All	 available	 information	 should	be	 fully	 reflected	 in	 the	 current	
price	of	an	asset.	(2)	The	new	information	is	combined	in	price	independent	and	random.	(3)	
All	investors	immediately	react	to	new	information.	All	these	three	conditions	means	that	the	
future	is	unrelated	to	the	past	or	the	present.”	(E.	Peters,	1996).	While,	most	people	do	nothing	
before	 the	 trend	 is	 clearly	 showed	and	 the	 information	 is	 been	 surely	 confirmed,	 but	 some	
people	maybe	react	as	soon	as	the	information	received.	Because	of	most	people	confirming	
information	in	different	time	and	not	react	it	as	soon	as	possible,	which	caused	a	biased	random	
walk.	 Biased	 random	 walk	 were	 been	 called	 fractional	 Brownian	 motions	 by	 Mandelbrot	
(Mandelbrot	1968).	Now	they	are	called	fractal	time	series.	“While	Fractal	Market	Hypothesis	
based	 on	 fractal	 and	 chaos	 theory.	 Chaotic	 and	 fractal	 system	 is	 a	 unconventional	 collage	
consists	of	deterministic	and	random	process.”	(E.	Peters,	1996).	
There	 are	 a	 number	 of	 important	 characteristics	 indicate	 that,	 if	 the	 capital	 markets	 are	
nonlinear	dynamic	systems,	according	to	the	Fractal	Market	Hypothesis,	 the	capital	markets	
exist	nonlinear	dynamic	systems,	then	we	should	expect:	“	first	they	are	feedback	system,	what	
happened	yesterday	influences	what	happens	today,	in	the	other	word	there	exist	long‐term	
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correlations	 and	 trends.	 Second	 erratic	 (critical	 levels)	 markets	 under	 certain	 condition	 at	
certain	times.	Third	the	system	is	fractal,	a	time	series	of	return	that,	at	smaller	increments	of	
time	will	 still	 look	 the	same	and	will	have	similar	 statistical	 characteristics.	Finally,	 there	 is	
sensitive	dependence	on	initial	conditions	and	less	reliable	forecast,	it	is	extremely	chaotic	and	
minor	events	can	cause	major	perturbation	in	final	outcome.”	(E.	Peters,	1996).	However,	due	
to	the	capital	market’s	unpredictable	movement,	there	is	always	existing	risk	to	investment	in	
capital	market.	Thus	it	would	be	highly	valued	and	helpful	to	find	an	appropriate	prediction	
model	for	capital	market	forecasting.		
In	this	article,	first	Swedish	capital	markets	have	been	selected	to	test	if	the	Swedish	capital	
markets	 have	 fractal	 and	 chaotic	 characteristics.	 Second,	 the	 Auto‐regressive	 integrated	
moving	average	(ARIMA)	model,	BP	neural	network	and	the	hybrid	model	have	been	chosen	to	
predict,	compared	with	the	results	of	those	three	models	the	“true”	or	“best”	model	should	be	
found	out	to	the	Swedish	capital	markets.	A	new	strategy	is	to	use	C‐C	method	(Kim	1999),	to	
reconstruct	the	BP	neural	network	and	the	hybrid	model.		

2. Method	

2.1. Fractal	and	Fractional	Dimension		
2.1.1. Fractal	
What	is	fractal?	A	fractal	is	an	object	in	which	the	parts	are	in	some	way	related	to	the	whole.	
Fractals	 are	 self‐referential,	 in	 another	word,	 they	 have	 a	 large	 degree	 of	 similarity	within	
themselves.	 Look	 at	 trees,	 they	 are	 perceived	 nature	 fractals.	 Trees	 have	 similar	 branches.	
Fractal	geometry	was	first	mentioned	by	Benoit	Mandelbrot	(1975).	The	self‐similar	quality	is	
the	defining	characteristic	of	fractals.	Fractal	geometry	just	right	can	describe	natural	shapes,	
far	more	“pure”	and	“symmetric”.	Fractals	give	structure	to	complexity,	and	beauty	to	chaos.	
The	shapes	or	time	series	fill	their	spaces	by	fractal	geometry.	To	set	the	Gaussian	random	walk	
has	a	dimension	of	1.5,	if	the	fractal	dimension	of	time	series	is	between	1	and	1.5,	which	shows	
that	the	time	series	is	between	a	straight	line	and	Gaussian	random	walk.	
2.1.2. Measuring	the	Fractal	Dimension	
How	jagged	the	time	series	is	that	can	be	measured	by	fractal	dimension.	The	entire	time	series	
need	to	be	covered	by	the	number	of	circles	which	have	fixed	diameter.	If	the	process	keeps	
doing	like	this,	the	relationship	between	the	number	of	circle	and	the	diameter	can	be	found	as	
follow:	

* 1DN d  	

Where,	D	=	fractal	dimension,	d	=	diameter,	and	N	=	number	of	circles.	
The	fractal	dimension	can	be	found	by	transformed	the	equation:	
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2.2. The	Hurst	Exponent	
In	order	to	measure	the	smoothness	of	a	time	series,	the	Hurst	Exponent	is	used	which	related	
to	fractal	dimension.	Because	of	the	Hurst	Exponent	is	remarkable	robust,	it	is	widely	used	in	
time	series	analysis.	It	can	figure	out	whether	the	time	series	are	random,	a	persistent,	or	an	
anti‐persistent	process.The	Hurst	Exponent,	H,	was	given	by	H.	E.	Hurst	(1951).	The	formula	is	
showed	as	follow:	
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R/S	 is	 related	 to	 the	 rescaled	range	which	was	develop	by	Hurst.	 In	1996	Peters	made	 this	
method	 used	 into	 the	 capital	 markets	 to	 find	 out	 if	 there	 were	 fractal	 characteristic	 and	
nonlinear	 behaviors	 exist	 in	 the	 capital	 markets.	 R/S	 is	 measured	 the	 range	 of	 the	 mean‐
centered	value	by	divided	the	T	into	stand	deviation.	The	T	is	the	duration	of	the	time	series.			
2.2.1. Rescaled	Range	Analysis	
When	 analyzing	 the	 capital	market	 usually	 the	 logarithmic	 returns	 are	 used	 to	 time	 series,	
because	it	is	more	appropriate:	

	
1

ln( )t
t

t

Px P
 	

Where	 tx 	is	logarithmic	return	at	time	t	

tP 	is	price	at	time	t	

Begin	with	the	time	series,t,	with	u	observations:	
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Where	 NtX , =	cumulative	deviation	over	N	periods	

ue =	influx	in	year	u	

NM =	average	 ue 	over	N	periods	

Taking	the	difference	between	the	maximum	and	the	minimum	levels	attained	the	range	(1):	
	

)()( ,, NtNt XMinXMaxR  																																																													(2)	

Where	R=range	of	X	
Max(X)=maximum	value	of	X	

Min(X)=minimum	value	of	X	

Hurst	divided	this	range	by	standard	deviation	of	the	original	observations	which	increase	with	
time	to	compare	different	types	of	time	series.	Then	the	formula	is	be	got:	

	 HNaSR )*(/  	

For	N	is	the	number	of	observations	and	a	is	a	constant,	H	known	as	the	Hurst	exponent.	
Taking	the	logarithmic	on	both	sides:	

)log()log()/log( NHaSR  																																																									(3)	

Let	set	if	H	equal	to	0.5,	the	series	is	a	random	walk.	So	if	 5.0H ,	time	series	is	consistent	and	
independently	distributed..	The	range	 15.0  H ,	which	means	a	persistent	time	series.	In	the	
other	words,	time	series	have	positive	correlations.	The	range	 5.00  H 	which	implies	anti‐
persistence	which	means	that	the	time	series	have	negative	correlations	(E.	Peters,	1996).	
In	the	fractal	time	series,	 15.0  H ,	time	series	have	persistence	and	long‐term	correlations	
that	is	different	to	the,	 5.0H ,	time	series	are	normally	distribution.		
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The	Hurst	Exponent	could	shows	the	time	series	exist	fractal	characteristics,	but	it	cannot	be	
measured	 the	 susceptibility	 of	 a	 system	 to	 sensitive	 dependence	 on	 initial	 condition	which	
shows	the	chaotic	behaviors.	Then	an	other	method	that	is	Largest	Lyapunov	Exponent,	is	been	
selected	to	test	if	this	time	series	system	is	“sensitive	dependence	on	initial	condition”	and	if	
there	exists	chaotic	characteristics.	

2.3. Lyapunov	Exponent	
The	 method	 developed	 by	 Wolf	 et	 al	 (1984)	 let	 us	 can	 calculating	 the	 largest	 Lyapunov	
exponent,	 1L ,	 using	 experimental	 data.	 If	 1L 	greater	 than	 zero	 would	 signify	 that	 sensitive	
dependence	on	initial	conditions	exists,	it	also	measures	stretching	in	phase	space:	that	is,	it	
measures	how	rapidly	nearby	points	diverge	from	one	another.	Here	the	definition	of	phase	
space	is	given	as	following.	(Looking	at	the	data,	 if	 it	 is	 in	nonlinear	dynamic	systems,	these	
problems	usually	have	multiple	and	perhaps	infinite	solutions.	Many	chaotic	systems	have	an	
infinite	number	of	solutions	contain	in	a	finite	space.	The	system	is	attracted	to	a	region	of	space,	
and	 the	 set	 of	 possible	 solutions	often	has	 a	 fractal	 dimension.	 If	 all	 the	 variables	 are	been	
known	in	the	system,	they	can	simply	plot	together	on	a	coordinate	system.	If	there	are	two	
variables,	variable	x	and	y	are	been	plotted	on	a	standard	Cartesian	graph,	that	plot	the	value	
of	each	variable	versus	the	other	at	the	same	instant	in	time.	This	is	called	the	phase	portrait	of	
the	system,	and	it	is	plotted	in	phase	space.	The	dimensionality	of	the	phase	space	depends	on	
the	number	of	variables	in	the	system.	The	phase	space	gives	us	a	picture	of	possibilities	in	the	
system).	According	to	Packard	et	al	(1980)	and	Takens	(1981),	the	method	of	delays	can	be	
used	 to	 embed	 a	 scalar	 time	 series	 )),(),2(),1(()(  ntxtxtxtX iiii  ,	 into	 an	 m‐
dimensional	space	as	follows:	
	

),2,1()]},)1([,),(),({)(   imtxtxtxtX iiii  	

Where	 m	 is	 the	 embedding	 dimension	 (	 in	 the	 other	 word,	 this	 time	 series	 has	 an	 m‐	
dimensional	space	)	and	 	is	the	delay	time	factor.	
First	choosing	a	point	 )( 0tX ,	then	choosing	the	second	point	nearby	 )( 00 tX ,	and	calculate	the	

distance, 0L ,	 )()( 0000 tXtXL  ,	between	these	two	points.	And	after	a	 fixed	 interval	of	 time	

until	 1t ,	the	distance	between	the	two	points	is	measured.	If	the	distance	becomes	too	long,	set	

a	  ,	 if	  )()( 101
'
0 tXtXL ,	 keep	 the	 )( 1tX ,	 and	 find	 another	 point	 )( 11 tX ,	 let	

 )()( 1111 tXtXL ,	 this	 replacement	 point	 with	 an	 angle	 of	 orientation	 similar	 to	 that	

original	point	is	found.	The	orientation	between	the	new	pair	of	points	should	be	as	close	as	
possible	to	that	of	the	original	pair.	Continuing	the	process	until	 )(tX 	thought	to	the	end	point	
N.	Let	the	number	of	iterations	be	M,	then	the	largest	Lyapunov	exponent	will	be:	
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This	 method	 measure	 the	 divergence	 of	 nearby	 points	 in	 reconstructed	 phase	 space,	 and	
indicates	how	the	rate	of	divergence	scales	over	fixed	intervals	of	time.	
For	 systems	where	 the	equation	are	known,	 constructing	a	phase	space	 is	 simple.	Here	C‐C	
method	is	selected	to	reconstruct	a	phase	space	to	get	delay	time	and	the	embedding	dimension.	
C‐C	method	is	gave	as	follow.	
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2.3.1. Reconstructing	a	Phase	Space	Using	C‐C	Method	
Kim	(1999)	proposed	C‐C	method,	he	developed	a	technique	for	choosing	either	the	delay	time	
d 	or	the	delay	time	window	 w 	using	the	correlation	integral	which	introduced	by	Grassberger	
and	Procaccia	(1983).	
In	order	to	use	it	conveniently,	the	definitions	are	given	as	following:	t	 is	the	index	lag,	 s 	is	

sampling	time,	 d st  is	the	delay	time,	 ( 1)w dm   	is	delay	time	window. ( )t   is	the	value	
of	 delay	 time,	 and	m	 is	 embedding	 dimension,	 N	 is	 size	 of	 data	 set,	 ( 1)M N m    	is	 the	
number	of	 embedded	points	 in	m	dimensional	 space	 and	defined	 the	 ( 1,2, )ix i M  are	 the	
points	of	the	reconstruction	phase	space	as	

m
imiiii RXxxxX   ),,,,( )1(   	

So,	the	correlation	integral	for	the	embedded	time	series	function	is	showed	in	following:	

1

2
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i j M

C m N r t r d
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z
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As	 ijd 	denotes	the	sup‐norm	and	 0r  .		

Which	measure	the	fraction	of	the	pairs	of	points	for	each	r	and	whose	sup‐norm	separation	in	
not	great	than	r.	
After	the	correlation	integral	was	defined,	then	reconstructed	statistic	 ( , , , )S m N r t .	The	formula	
is	given	as	follow:		

( , , , ) ( , , , ) (1, , , )mS m N r t C m N r t C N r t  ,		

The	time	series	{ }, 1,2, ,ix i N  	is	been	subdivided	into	t	disjoint	time	series.	Then	 ( , , , )S m N r t 	
is	computed	as	follows:	
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For	 1t ,	the	single	time	series	is	 },,,{ 21 Nxxx  ,	and		

( , , ,1) ( , , ,1) (1, , ,1)mS m N r C m N r C N r  	

For	t=2,	the	two	disjoint	time	series	are	 },,,{ 131 Nxxx  	and	 },,,{ 42 Nxxx  ,	each	of	length	 2
N ,	

and	the	average	of	the	values	of	 )2,,2,( rNmS 	for	these	two	series:	

1 1 2 2

1
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For	general	t,	this	becomes		
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Finally,	asN  		we	can	write		

	
1

1
( , , ) [ ( , , ) (1, , )], 2,3,

t
m

s s
s

S m r t C m r t C r t m
t 

    	

If	the	time	series	data	is	iid,	then	for	fixed	m	and	t,	when	N  	for	all	r,	 ( , , )S m r t 	equal	to	0.	
But	for	the	real	data,	things	go	different:	first	the	data	set	may	be	serially	correlated,	second	the	
data	set	is	finite.	These	make	the	 ( , , ) 0.S m r t  	For	that	reason,	the	locally	optimal	times	could	
be	zero	crossings	of	 ( , , )S m r t 	or	the	times	at	the	least	variation	with	r	of	 ( , , )S m r t .	Hence,	we	
select	the	max	and	min	values	of	 ( , , )S m r t 	of	 jr ,	and	the	formula	is	defined		

( , ) max{ ( , , )} min{ ( , , )},j jS m t S m r t S m r t   	

( , )S m t 	measure	of	the	max	variation	of	 ( , , )S m r t 	with	r.	Then	the	zero	crossings	of	 ( , , )S m r t 	
and	the	minims	of	 ( , )S m t 	are	the	locally	optimal	times	t.	For	all	m	and	r,	the	zero	crossings	of	
( , , )S m r t should	be	nearly	the	same.	For	all	m,	the	minims	of	 ( , )S m t 	should	be	nearly	the	same.	

The	first	of	this	locally	optimal	time	is	the	delay	time	 d 	.	

Appropriate	 choices	 for	m,	 N,	 and	 r	 can	 be	 found	 by	 examining	 the	 BDS	 statistic.	 The	 BDS	
statistic	originates	from	the	statistical	properties	of	the	correlation	integral,	and	it	measures	
the	statistical	significance	of	calculations	of	the	correlation	dimension.	Even	though	the	BDS	
statistic	 cannot	 be	 used	 to	 distinguish	 between	 a	 nonlinear	 deterministic	 system	 and	 a	
nonlinear	stochastic	system,	it	is	a	powerful	tool	for	distinguishing	random	time	series	from	
chaotic	or	nonlinear	stochastic	time	series.	In	this	paper	the	BDS	statistic	is	defined	as	

	
)],,,,1(),,,([),,( trNCtrNmC

N
rNmBDS m

 	

Which	converges	to	a	standard	normal	distribution	as	 N .	Brock	et	al	(1996)	had	studied	
this	kind	of	time	series.	He	used	three	sample	sizes,	N=100,	500	and	1000,	of	that	time	series.	
After	that	he	used	six	asymptotic	distributions:	a	bimodal	mixture	of	normal	distributions,	a	
double	exponential	distribution,	a	student‐t	distribution	with	three	degrees	of	freedom,	a	chi‐
square	 distribution	 with	 four	 degrees	 of	 freedom,	 a	 uniform	 distribution,	 and	 a	 standard	
normal	distribution	to	generate	by	Monte	Carlo	simulations.	The	results	show	that	m	should	be	

between	 2	 and	 5	 and	 r	 should	 be	 between	
2


	and	 2 . 	When	 500N  ,	 the	 asymptotic	

distributions	were	well	approximated	by	finite	time	series.		
 	is	mean	square	error	or	standard	deviation,	for	using	C‐C	method	to	calculate	the	delay	time	

factor	and	embedding	dimension,	we	let	N=3000,	 2,3,4,5,m  	 , 1, 2,3,4.
2i

i
r i


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We	then	define	the	following	averages	of	the	quantities	given	by	Eqs.	
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2

1
( ) ( , ),

4 m

S t S m t


   	

The	first	zero	crossing	of	 ( )S t 	or	the	first	local	minimum	of	 ( )S t 	to	find	the	first	locally	optimal	
time	for	independence	of	the	data,	which	gives	the	delay	time	 .d 	If	we	assign	equal	importance	
to	these	two	quantities,	then	we	may	simply	look	for	the	minimum	of	the	quantity.		
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cot ( ) ( ) ( ) ,S t S t S t  
	

This	optimal	time	gives	the	delay	time	window ( 1) .w dm   		

After	reconstruct	time	series	as	a	phase	space	from	 321 ,, xxx ,	let	 	is	delay	time	factor,	and	m	
is	embedding	dimension,	then	we	get	the	time	series	as	follow:		
	

),2,1()]},)1([,),(),({)(   imtxtxtxtX iii  	

2.4. Forecasting	Models	
Then	 these	 theories	 are	 used	 to	 test	 if	 the	 Swedish	 stock	 market	 has	 fractal	 and	 chaotic	
characteristics.	If	so	the	Swedish	stock	market	is	a	nonlinearity,	nonstationary,	and	chaotic	data	
series,	that	makes	the	Swedish	stock	market	extremely	complex,	chaotic	and	difficult	to	predict.	
However	as	a	investment	must	minims	the	risk	and	maximize	the	profit,	that	is	the	reason	a	
mode	 is	needed	 to	predict	more	accurately.	There	are	several	different	approaches	on	 time	
series	 forecasting.	 First	 there	 will	 be	 linear	 models	 including	moving	 average,	 exponential	
smoothing,ans	Auto‐regressive	 integrates	moving	 average....	 Second	 these	 are	 the	nonlinear	
models	 like	 the	 threshold	 Auto‐regressive	 (TAR)	 model	 (Tong	 1983),	 the	 Auto‐regressive	
conditional	heteroscedastic	(ARCH)	model	(Engle	1982),	general	Auto‐regressive	conditional	
heteroscedastic	 (GARCH)	 model,	 chaotic	 dynamics,	 and	 artificial	 neural	 networks.	 The	
univariate	Box‐Jenkins	(1970)	Auto‐regressive	integrated	moving	average	(ARIMA)	model	is	
most	 classical	 linear	 forecasting	 model	 and	 has	 been	 widely	 used	 for	 model	 and	 forecast	
financial	 and	 economical	 application.	 “Although	 some	 improvement	 has	 been	 noticed	 with	
these	nonlinear	models,	 the	 gain	of	 using	 them	 to	 general	 forecasting	problems	 is	 limited.”	
(Zhang	2003)	These	models	can’t	show	other	kind	of	nonlinearity,	 though	they	are	built	 for	
especially	type	of	nonlinearity.	Recently	the	BP	neural	network	models	are	popularity	using	in	
nonlinearity	and	chaotic	system,	which	are	the	most	widely	used	model	form	for	time	series	
modeling	and	forecasting.	The	reason	is	that	they	have	flexible	nonlinear	modeling	capability.	
However,	using	Bp	neural	network	model	to	model	linear	problems	has	yielded	mixed	results	
and	may	be	BP	neural	network	model	is	over	fitting	the	data,	whose	adaptively	formed	based	
on	the	feature	presented	from	the	data.		
The	hybrid	model	 is	by	combining	several	different	models.	 In	 this	paper,	 the	hybrid	model	
combines	ARIMA	model	and	BP	neural	network	model	 to	 forecast	 the	capital	market	 trend.	
From	Zhang	(2003),	there	are	many	empirical	studies	showed	that	the	hybrid	models	improved	
forecasting	performance.	“	Several	feed	forward	neural	networks	were	used	to	improve	time	
series	 forecasting	 accuracy	 by	 Pelikan	 et	 al	 (1992)	 and	 Ginzburg	 and	 Horn	 (1994).	 M‐
competition	(1982)	in	which	combination	of	forecasts	from	more	than	one	model	often	leads	
to	 improved	 forecasting	 performance.	 The	 sales	 forecasting	was	 presented	 by	 Luxhoj	 et	 al.	
(1996)	using	a	hybrid	econometric	and	ANN	approach.	Wedding	and	Cios	(1996)	used	radial	
basis	function	networks	and	the	Box–Jenkins	models	to	describe	a	combining	methodology.”	
Zhang	(2003).		
Based	 on	 the	 Swedish	 stock	 market,	 Auto‐regressive	 integrated	 moving	 average	 (ARIMA)	
model,	 BP	 neural	 network	 and	 the	 hybrid	model	 are	 been	 chosen.	 These	models	 are	 been	
selected	to	predict	the	Swedish	stock	market	and	determinate	which	model	is	more	suitable	for	
Swedish	stock	market.	The	“true”	or	“best”	model	will	be	found	out.		
As	follow,	ARIMA	and	BP	neural	networks’	modeling	approaches	to	time	series	forecasting	are	
reviewed,	the	hybrid	methodology	is	introduced.	The	results	from	the	real	data	set	is	reported	
in	last	section.	
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2.4.1. The	Auto‐regressive	Integrated	Moving	Average	(ARIMA)	Models	
Auto‐regressive	integrated	moving	average	(ARIMA)	models	have	been	used	in	many	areas	of	
time	series	forecasting.	Here	the	ARIMA	model	defined	is	given	briefly.	The	function	form	is	
given	as	follow:	

0 1 1 2 2 1 1 2 2t t t p t p t t t q t qy y y y                          																															(5)	

Where	 ty 	represents	the	actual	value	and	 t 	is	the	random	error.	P	and	q	are	the	number	of	the	
Auto‐regressive	 terms	 and	 the	 moving	 average	 terms,	 respectively.	 	 ( 1,2, , )i i p   	and	

( 1, 2, , )j j q   	are	parameters	of	models.		

Equation	 (5)	makes	up	 tree	parts:	one	 is	 auto‐regression	AR(p),	 another	 is	moving	average	
MA(q)	and	the	third	is	integration	I(d).	
When	the	models	are	been	identified,	the	timer	series	need	be	stationary,	after	that	the	partial	
auto‐correlation	function	(PACF)	and	the	auto‐correlation	function	(ACF)	are	used	to	select	the	
ARIMA	model.	There	are	also	another	method	to	select	model,	such	as	the	Akaike’s	information	
criterion	(AIC)	and	Bayesian	information	criterion	(BIC).	
The	diagnostic	checking	of	model	adequacy	 is	been	 taken	at	 last	 step.	 If	 t 	are	satisfied,	 the	
model	is	selected.		
2.4.2. BP	Neutral	Network	Model	
In	recent	years,	due	to	the	development	of	computer	technology	and	artificial	intelligence,	as	
the	stock	market	modeling	and	forecasting	application	of	new	technologies	and	new	methods	
of	providing	favorable	conditions,	artificial	neural	network,	because	of	its	extensive	ability	to	
adapt,	learning	ability	and	mapping	capabilities,	achieved	in	modeling	nonlinear	multivariable	
systems	amazing	achievement.	These	models	are	decided	by	the	data	and	don’t	need	the	prior	
assumption	 to	build	 the	models.	The	network	models	maybe	widely	used	 in	 time	series	 for	
forecasting	in	the	future.	
2.4.2.1	BP	Neutral	Network’s	Mathematical	Model	
As	follow	paper,	three	layers	BP	neutral	network	is	took	to	predict	the	index	of	stock	market.		
	In	 first	 layer	 is	 input	 layer,	 that	have	n	nodes,	and	normalization	 is	done	to	operate	 for	 the	
original	data.	Let	 )(' tx 	as	 the	original	 time	series	data	and	 )(tx 	as	 the	 time	series	data	after	
normalization.	

 
   )('min)('max

)('min)('
)(

txtx

txtx
tx




 	

And	the	second	layer	is	hide	layer.	It	not	only	receive	the	signals	from	the	first	layer,	but	also	
the	delayed	signals	from	itself.	
The	third	layer	is	output	layer.	This	layer	only	have	one	node	for	output	predict	value.	
The	inputs	vector: T

il xxxxX ),( 21  	

The	hidden	layer	output	vector:	 T
jm yyyyY ),( 21  	

The	output:	 T
kn zzzzZ ),( 21  		

The	expected	output:	 1 2( , )Tn kD d d d d   	

The	connection	weights	between	input	layer	and	hidden	layer:		

1 2( , )TiW w w w  		

The	connection	weights	between	hidden	layer	and	output	layer:		
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1 2( , )TjV v v v  	

And	 the	 biased	 and	 recursion	 neutral	 network	 model	 has	 the	 following	 mathematical	
representation.	

	

	

And	the	hidden	layer	transfer	function	often	suggests	the	 ( )f  	logistic	function,	that	is,	

)](1)[()(,
1

1
)( '

)(
xfxfxf

e
xf

x



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The	parameters	are	estimated	such	that	the	cost	function	of	neural	network	is	minimized.	Cost	
function	is	an	overall	accuracy	criterion	such	as	the	following	mean	squared	error:	

N

zt
E

N

i
ii




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pit 	and	 piz 	are	expected	output	and	real	output.	

2.4.2.2	Learning	Part	(Network	Learning	Formula	Derivation)	

Network	 learning	 formula	 derivation	 is	 correcting	 the	 connection	 weights	 ),( kjij vw 	and	

threshold	value	( )	and	let	the	cost	function	decreased	along	the	gradient	direction.	BP	neural	
network	 has	 three	 layer	 points:	 input	 point	 ix ,	 hidden	 point	 jy 	and	 output	 point	 kz .	 The	

connection	weight	between	input	point	and	hidden	point	is	 ijw ,	the	connection	weight	between	

hidden	point	and	output	point	is	 kjv .	When	the	expected	output	is	 kd ,	the	formula	of	BP	neural	

network	model	is	should	as	following:	
The	hidden	point	output		

( ) ( ),j ij i j j j ij i j
i i

y f w x f net net w x       	

The	output	point		

( ) ( ),k jk j k k k jk j k
j j

z f v y f net net v y       	

Error	function	of	output	point		
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And	the	E	is	the	function	of	 mz ,	but	there	is	only	one	 kz 	has	correlation	with	 jkv 	and	the	relation	

between	 kz 	are	independent.	

1
2( ) ( )

2
m

m m k k
m k

zE
t z d z

z z


     

  	

'( )k k k
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  
 
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So		
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E
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Let	 k 	be	the	error	of	input	point	

( ) '( )k k k kd z f net   	

Then		

k j
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E
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 
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The	formula	of	the	hidden	point	is	
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The	E	is	the	function	of	 kz ,	for	one	 ijw ,	there	exists	 jy .			
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Let	 '
j 	be	the	error	of	the	hidden	point	
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Because	 correcting	 weights	 jkv 	and	 ijw 	are	 proportional	 to	 decrease	 along	 the	 gradient	

direction,	the	the	formulas	of	 jkv 	and	 ijw 	are	showed	as	follow:	

jk k j
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' '( )j j k jk
k
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Where	the	parameter	 	is	called	learning	rate.	

To	speed	up	the	learning	process,	while	avoiding	the	instability	of	the	algorithm,	Rumelhart	and	

McClelland	(1986)	introduced	a	momentum	term	 ,	thus	obtaining	the	following	learning	rule:	
' '( 1) ( )ij ij

ij

E
w k w k

w
 
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( 1) ( )jk jk
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

	

The	momentum	term	may	also	be	helpful	to	prevent	the	learning	process	from	being	trapped	
into	poor	local	minimize,	and	is	usually	chosen	in	the	interval	[0,1].	Finally,	the	estimated	model	
is	evaluated	using	a	separate	hold‐out	sample	that	is	not	exposed	to	the	training	process.	
So,	the	corrected	weights	are:	
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In	 this	 paper	 C‐C	 method	 is	 used	 to	 reconstruct	 a	 phase	 space	 to	 get	 delay	 time	 and	 the	
embedding	 dimension	 p	 which	 are	 used	 to	 construct	 the	 BP	 neutral	 network	 model.	 The	
number	of	the	put	variables	are	determinable	by	embedding	dimension,	the	delay	time	factors	
are	the	delay	time	factor	in	node	of	 input	 layer.	This	 is	reasonable,	because	the	phase	space	
contains	 all	 the	 variables	 in	 the	 data	 and	 using	 these	 variables	 to	 construct	 the	 BP	 neural	
network	model	and	the	hybrid	model	as	input	variables	to	predict,	can	be	better	explain	the	
Swedish	Capital	Markets.	So	the	embedding	dimension	and	delay	time	factors	are	suggested	in	
this	paper	to	construct	the	BP	neural	network	model.	
2.4.3. The	Hybrid	Methodology	
This	 hybrid	methodology	was	 issued	 by	 Zhang	 (2003).	 The	 hybrid	model	 is	 constructed	 as	
following.	As	so	far	as	we	know,	ARIMA	models	maybe	good	chosen	in	linear	problem,	but	not	
work	well	 in	 the	 complex	nonlinear	 problem.	On	 the	 other	BP	neutral	 network	models	 are	
suiting	to	nonlinear	problem,	however	for	the	linear	problem	maybe	not	suit	very	well.	Hence,	
the	hybrid	models	combining	the	ARIMA	and	the	BP	neural	network	model	which	capture	both	
linear	and	nonlinear	problems.	
For	the	hybrid	model,	the	function	form	is	proposed	like		
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,t t ty L N  	

Where	 tN 	is	 the	 nonlinear	 part	 and	 tL 	is	 the	 linear	 part.	 According	 to	 the	 data,	 the	ARIMA	
model	is	selected	to	model	the	linear	part.	The	residual	 te 	only	contains	the	nonlinear	parts.	
The	residual	is	denoted	as	follow:				


t t te y L  	

Where	tL 	is	the	forecast	value	from	ARIMA	model	at	the	time	t.	After	diagnostic	checking,	the	
model	 the	 appropriately	model	 is	 build.	 Then	 the	BP	neutral	 network	 is	 used	 to	model	 the	
residuals.	

1 2( , , , )t t t t n te f e e e     																																																														(6)	

Where	 t 	is	the	random	error	from	the	BP	neutral	network,	if	the	model	is	an	appropriate	one.	

Therefore,	the	correct	model	identification	is	critical.	Set	(6)	as	tN 	the	predict	value	is	defined	
as	follow:	

  
t t ty L N  	

In	 the	other	worlds,	 the	hybrid	models	are	made	of	 two	steps.	First	 for	 the	 linear	parts,	 the	
ARIMA	model	is	used	to	model	the	linear	problem.	Second	foe	the	nonlinear	part,	the	BP	neutral	
network	is	used	to	model	the	residuals	from	the	first	step.	Then	the	both	models	are	building	
and	the	predict	values	can	be	gotten.	

3. Data	

3.1. Database	
In	this	paper,	the	database	are	based	on	the	OMX	Stockholm	30	Index	data	and	three	Swedish	
companies’	stock	price,	which	are	Ericsson,	Hennes	&	Mauritz	and	Nordea	Bank	are	selected.	
The	resource	from	May	2000	to	March	2014.	The	data	is	used	all	the	section	3	and	all	the	models.	
The	OMX	Stockholm	30	(OMXS30)	is	a	stock	market	index	for	the	Stockholm	Stock	Exchange,	
which	 is	 a	 capitalization‐weighted	 index	 that	 consists	 of	 the	 30	 most‐traded	 stocks.	 That	
displays	 the	 Swedish	 capital	markets’	movements	 and	also	 shows	 the	 trend	of	 the	 Swedish	
economic.	That	why	the	OMX	Stockholm	30	Index	data	is	selected.	In	order	to	test	these	models,	
the	Ericsson,	Hennes	&	Mauritz	and	Nordea	Bank	companies’	stock	are	been	selected,	which	
take	larger	parts	in	constructing	the	OMX	Stockholm	30	Index.		

3.2. Output	of	Hurst	Exponent	and	Lyapounov	Exponent		
Based	on	 these	data,	 the	Hurst	 analysis	 are	 constructed	and	 the	Hurst	Exponent	values	are	
gotten.	But	the	period	of	the	time	to	calculate	the	Hurst	Exponent	maybe	have	autocorrelation,	
or	 correlation,	 and	 heteroskedasticity	 in	 the	 error	 terms	 in	 the	 R/S	 analysis.	 In	 order	 to	
overcome	autocorrelation,	or	correlation,	and	heteroskedasticity,	the	Newey	‐West	estimator	
(which	was	devised	by	Whitney	K.Newey	and	Kenneth	D.West	in	1987)	is	used	to	improve	the	
ordinary	 least	 squares	 (OLS)	 regression	 when	 the	 variables	 have	 heteroskedasity	 or	
autocorrelation	(Newey	and	West	1987	).	In	this	paper,	the	Newey‐West	estimator	is	used	to	
calculate	 the	 Hurst	 Exponent.	 Before	 using	 this	method,	 the	 C‐C	method	 is	 used	 to	 get	 the	
embedding	dimensions	and	the	delayed	time.	
The	Table	1	shows	 the	embedding	dimension	and	 the	delay	 time	os	 the	OMX	Stockholm	30	
Index,	Ericsson,	Hennes	&	Mauritz	B	and	Nordea.	
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Table	1.	C‐C	method	get	the	embedding	dimensions	and	the	delayed	time	

C‐C	 Embedding	dimension	 Delay	time	

OMX	Stockholm	30	Index	 5	 1	

Ericsson	 2	 2	

Hennes	&	Mauritz	B	 3	 1	

Nordea	 2	 1	

	
Then	the	Newey‐West	estimator	is	used	to	calculate	the	Hurst	Exponent,	and	the	Stata	soft	is	
used	to	get	the	values	of	the	Hurst	Exponent.		
	

Table	2.	The	values	of	the	Hurst	Exponent	
	 Hurst	Exponent	 T	value	for	Hurst	Exponent	

OMX	Stockholm	30	Index	 0.777	 20.29	

Ericsson	 0.654	 13.16	

Hennes	&	Mauritz	B	 0.593	 4.03	

Nordea	 0.716	 13.14	

	
The	Table	2,	the	Hurst	Exponent	values	are	showed.	The	T‐test	is	suggested	to	test	if	they	are	
difference	 from	 0.5.	 The	 null	 hypothesis	 5.0:0 HH 	against	 the	 one‐sided	 alternative	

5.0:1 HH .	 The	 test	 statistic	 is	 again	 as	 given	 in	 )1(~
5.0

^

^




 nt
SE

H
t

H

	and	 the	 ^
H

SE is	 the	

Newey‐West	Standard	error.	 if	 ct  ,	c	 is	the	critical	value,	the	null	hypothesis	 is	rejected.	In	
these	cases,	for	n=172	the	critical	value	is	around	3.3	in	99.9%	interval	estimator.	All	the	t	value	
is	larger	than	the	critical	value,	the	null	hypothesis	is	rejected,	the	OMX	Stockholm	30	Index,	
Ericsson,	Hennes	&	Mauritz	and	Nordea	Banks’	Hurst	Exponent	values	are	significant	 larger	
than	0.5.	The	Lyapounov	Exponent	values	are	calculated	by	Matlab	and	the	values	are	showed	
in	Table	3.	

Table	3.	The	values	of	Lyapounov	Exponent	
	 Lyapounov	Exponent	

OMX	Stockholm	30	Index	 0.0601	

Ericsson	 0.1014	

Hennes	&	Mauritz	B	 0.0427	

Nordea	 0.2845	

	

From	the	Table	2	and	Table	3,	the	estimators	for	the	Hurst	Exponent	for	these	stock	markets	
are	different	 from	0.5	 and	 the	 largest	Lyapunov	exponent	of	 these	 stock	market	were	been	
calculated	whose	values	are	larger	than	zero,	which	show	that	first	the	Swedish	stock	market	
is	 clearly	 fractal	 and	not	 a	 random	walk.	 Second	what	happened	yesterday	 influences	what	
happens	today,	the	Swedish	stock	markets	exist	long‐term	correlations	and	trends,	so	the	the	
Swedish	stock	markets	exhibit	trend	‐	reinforcing	behavior,	not	mean	‐	trends	and	the	system	
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shows	nonlinear	and	fractal.	Third	because	of	the	the	Swedish	stock	markets	system	is	fractal,	
the	return	of	a	time	series	has	a	smaller	increment	of	the	time	will	still	look	the	same	and	has	
similar	statistical	characteristics.	Finally,	the	the	largest	Lyapunov	exponent	values	are	larger	
than	zero,	the	Swedish	stock	market	is	sensitive	dependence	on	initial	condition,	less	reliable	
forecast	and	has	chaotic	characteristics.	Because	of	 these	characteristics,	chaos	and	 fractal’s	
theory	 provides	 an	 better	 explanation	 for	 the	 complex	 and	 unstable	 irregular	 behavior,	
unpredictable	results	regarding	deterministic	nonlinear	system	that	are	sensitive	to	their	initial	
condition	of	Swedish	stock	markets.	

3.3. Model	Selection	
The	following,	the	three	models	are	recommended	to	forecast	the	Swedish	stock	market	and	
compared	which	model	is	more	appropriate	for	the	Swedish	stock	markets.		
The	weekly	data	of	OMX	Stockholm	30	Index	and	three	Swedish	companies’	stock	price,	which	
are	Ericsson,	Hennes	&	Mauritz	and	Nordea	Bank	are	selected.	From	May	of	2000	to	July	2013	
as	sample	data	and	from	August	of	2013	to	March	of	2014	as	predicting	data.	The	plot	of	these	
time	series	data	(see	Figure	1	to	Figure	4)	seem	they	have	some	economic	cycle	and	in	period	
of	they	have	trend.	
	

	

Figure	1.	Weekly	OMX	Stockholm	30	Index	price	series	(2000	‐	2014)	
Weekly	OMX	Stockholm	30	Index	price	series	(2000	‐	2014)	

	

	

Figure	2.	Weekly	Ericsson	stock	price	series	(2000	‐	2014)	
Weekly	Ericsson	stock	price	series	(2000	‐	2014)	
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Figure	3.	Weekly	Hennes	&	Mauritz	stock	price	series	(2000	‐	2014)	
Weekly	Hennes	&	Mauritz	stock	price	series	(2000	‐	2014)	

	

	

Figure	4.	Weekly	Nordea	stock	price	series	(2000	‐	2014).	
Weekly	Nordea	stock	price	series	(2000‐2014)	

3.3.1. ARIMA	Model	
In	this	paper,	all	ARIMA	modelings	are	implemented	via	Stata.	The	train	set	data	is	been	taken	
to	construct	the	ARIMA	model.	The	Table	4	shows	the	construction	of	the	sample	data.		
	

Table	4.	Sample	composition	in	these	data	sets	
Series	 Sample	size	 Train	set	(size)	 Test	set	(size)	

Stockholm	30	Index	 724	 2000‐2013	(689)	 2013‐2014	(34)	

Ericsson	 724	 2000‐2013	(689)	 2013‐2014	(34)	

Hennes	&	Mauritz	 724	 2000‐2013	(689)	 2013‐2014	(34)	

Nordea	 724	 2000‐2013	(689)	 2013‐2014	(34)	
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Then	examined	the	time	series	properties	of	the	data	using	ADF	(Augmented	Dickey	Fuller)	test,	
until	the	differential	function	of	the	close	price	don’t	have	unite	root.	The	results	of	the	DF	test	
of	these	time	series	data	are	showed	in	Table.	
	

Table	5.	The	P‐values	of	ADF	(Augmented	Dickey	Fuller)	test.	

ADF	test	 Test	statistic	 1%	critical	
value	

5%	critical	
value	

10%	critical	
value	

P‐value

Stockholm	30	Index	 ‐1.992	 ‐3.430	 ‐2.860	 ‐2.570	 0.2900

Ericsson	 ‐1.400	 ‐3.430	 ‐2.860	 ‐2.570	 0.582	

Hennes	&	Mauritz	 ‐2.104	 ‐3.430	 ‐2.860	 ‐2.570	 0.2430

Nordea	 ‐1.905	 ‐3.430	 ‐2.860	 ‐2.570	 0.3296

From	the	Table	5,	the	P‐values	are	larger	than	0.05,	these	time	series	are	not	stationary,	they	
have	unit	roots.	
	
In	order	to	obtain	the	stationary	series,	the	logarithmic	and	the	differential	function	of	the	close	
prices	are	computed.	From	the	Figure	5	to	8,	the	data	are	seemed	like	the	white	noise	series.	
	

	

Figure	5.	The	white	noise	series	of	OMX	Stockholm	30	
	

	
Figure	6.	The	white	noise	series	of	Ericsson	stock	
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Figure	7.	The	white	noise	series	of	Hennes	&	Mauritz	stock	
	

	

Figure	8.	The	white	noise	series	of	Nordea	stock	
	

The	results	of	the	ADF	test	of	the	logarithmic	and	the	differential	function	of	the	close	prices	are	
showed	in	Table	6.	
	

Table	6.	The	results	of	the	ADF	test	

ADF	test	 Test	statistic	 1%	critical	
value	

5%	critical	
value	

10%	critical	
value	

P‐value

Stockholm	30	Index	 ‐27.681	 ‐3.430	 ‐2.860	 ‐2.570	 0	
Erisson	 ‐23.308	 ‐3.430	 ‐2.860	 ‐2.570	 0	

Hennes	&	Mauritz	 ‐27.563	 ‐3.430	 ‐2.860	 ‐2.570	 0	
Nordea	 ‐28.589	 ‐3.430	 ‐2.860	 ‐2.570	 0	

	
From	the	Table	6,	the	P‐values	are	showed	that	the	null	hypothesis	is	been	reject	and	these	time	
series	are	stationary.		
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After	 the	 stationary	 is	 identified,	 the	 best	 fit	 AR	parameters	 and	MA	parameters	 should	 be	
estimated	 according	 to	 its	 autocorrelation	 (AC)	 function	 and	 partial	 autocorrelation	 (PAC)	
function,	respectively.	The	programs	are	been	done	in	Stata.	
The	Table	7	shows	the	ARIMA	models	of	 the	 logarithmic	and	the	differential	 function	of	the	
close	price	of	OMX	Stockholm	30	Index,	Ericsson,	Hennes	&	Mauritz	and	Nordea	Bank.	
	

Table	7.	The	ARIMA	models	of	these	four	stocks	

Time	series	 ARIMA	Model	 Formula	

Stockholm	30	Index	 ARIMA(1	4	5	13,1,1)
1 4 5 13

1

0.38 0.071 0.126 0.138

0.413
t t t t t t

t

z z z z z 


   



    


Ericsson	 ARIMA(1,1,0)	 10.117t t tz z   	

Hennes	&	Mauritz	 ARIMA(1,1,1)	 1 10.868 0.908t t t tz z      	

Nordea	 ARIMA(4,1,4)	
1 2 3 4

1 2 3 4

0.139 0.237 0.1 0.852

0.229 0.281 0.185 0.857
t t t t t t

t t t t

z z z z z 
   

   

   

    
    	

	
The	series	 tz 	was	the	logarithmic	and	the	differential	function	returns’	function	of	these	time	
series.	
After	 fitted,	ARIMA(p,d,q)	has	been	selected	 to	be	 the	most	parsimonious	among	all	ARIMA	
models.	Then	the	residuals	are	been	tested,	 if	 the	residuals	are	white	noise	series,	the	fitted	
model	will	be	found.	Once	the	ultimately	fitted	model	was	identified,	the	equations’	form	of	the	
model	could	be	obtain.		
The	Table	8	shows	the	white	noise	test	of	the	residuals.	
	

Table	8.	The	white	noise	test	of	the	residuals	
White	noise	test	 Q	Statistic	 P‐value	

Stockholm	30	Index	 42.3111	 0.3715	

Ericsson	 42.8726	 0.3490	

Hennes	&	Mauritz	 30.3507	 0.8652	

Nordea	 28.2553	 0.9182	

From	the	Table	8,	the	residuals	are	white	noise	series,	so	the	fitted	model	will	be	found.		
3.3.2. BP	Neural	Network	Model	
A	three‐layer	BP	neural	network	model	is	developed	for	the	predict	of	the	OMX	Stockholm	30	
Index,	Ericsson,	Hennes	&	Mauritz	and	Nordea	Banks’	weekly	data	set	from	January	2000	to	
July	2013	which	is	used	for	model	training,	and	the	rest	data	set	from	August	2013	to	March	
2014	 is	used	 for	model	verification	purpose.	From	the	Table	4,	 the	construction	of	 the	data	
shows	clearly.	In	BP	neural	modeling	process,	the	input	and	output	data	sets	for	each	parameter	
were	normalized	to	range	of	[0,1].		
The	number	of	neurons	in	input	layer	is	been	calculated	by	C‐C	method	as	equal	to	embedding	
dimension	and	the	output	layer	has	been	set	as	1.	In	order	to	determine	the	optimum	number	
of	hidden	nodes,	a	series	of	different	topologies	are	used.	When	the	training	set	has	the	lowest	
error,	the	number	of	the	hidden	nodes	are	been	settled.	The	parameters	of	the	network	were	
chosen	as	follows:	the	stop	criterion	of	error	function	was	set	to	1e‐5	and	the	maximum	of	the	
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number	of	 iterations	was	5000.	Computer	program	has	been	performed	under	MATLAB	7.0	
environment.	As	follows	are	the	Figure	for	performance	of	the	BP	neural	network	model.	The	
three‐layer	BP	neural	network	models	of	 the	OMX	Stockholm	30	 Index,	Ericsson,	Hennes	&	
Mauritz	and	Nordea	Bank	are	constructed	as	Table	9.		
	

Table	9.	BP	model	of	these	four	stocks.	
BP	model	 Input	nodes	 Delay	time	 Hidden	nodes	 Output	nodes	

Stockholm	30	Index	 5	 1	 8	 1	
Ericsson	 2	 2	 8	 1	

Hennes	&	Mauritz	 3	 1	 10	 1	
Nordea	 2	 1	 4	 1	

3.3.3. Hybrid	Modeling	
The	proposed	algorithm	of	the	hybrid	system	consisted	of	two	steps.	In	the	first	step,	to	analyze	
the	linear	part	of	the	problem,	an	ARIMA	model	was	employed.	In	the	second	step,	the	residuals	
from	the	ARIMA	model	were	modeled	by	using	a	neural	network	model.	Since	the	ARIMA	model	
cannot	detect	 the	nonlinear	 structure	of	 the	 stock	market	 time	 series	data,	 the	 residuals	 of	
linear	model	 will	 contain	 information	 about	 the	 nonlinearity.	 The	 outputs	 from	 the	 neural	
network	can	be	used	as	predictions	of	the	error	terms	of	the	ARIMA	model.	The	hybrid	model	
utilizes	the	unique	feature	and	strength	of	ARIMA	model	as	well	as	ANN	model	in	determining	
different	 patterns.	 Therefore,	 it	 may	 be	 favorable	 to	 model	 linear	 and	 nonlinear	 patterns	
separately	by	using	different	models	and	then	combine	the	predictions	to	improve	the	overall	
modeling	and	predicting	performance.	In	the	hybrid	modeling	algorithm,	the	input	and	output	
stocks’	data	sets	 for	each	parameter	were	normalized	 to	 the	range	of	 [0,1].	 In	 the	modeling	
process,	the	hybrid	model	was	trained	to	adjust	the	model	and	the	number	of	neurons	in	input	
layer	was	been	set	by	C‐C	method	as	equal	to	embedding	dimension,	the	output	layer	has	been	
set	as	1	and	the	hidden	nodes	were	depended	on	the	models.	The	construction	of	the	hybrid	
model	of	residuals	sets	 is	showed	 in	Table	10	and	the	models	of	 the	hybrid	models	of	OMX	
Stockholm	30	Index,	Ericsson,	Hennes	&	Mauritz	and	Nordea	Bank	are	constructed	as	Table	11.	
	

Table	10.	Sample	composition	in	residuals	sets	
Residual’s	series	 Sample	size	 Train	set	(size)	 Test	set	(size)	

Stockholm	30	Index	 724	 2000‐2013	(689)	 2013‐2014	(34)	

Ericsson	 724	 2000‐2013	(689)	 2013‐2014	(34)	
Hennes	&	Mauritz	 724	 2000‐2013	(689)	 2013‐2014	(34)	

Nordea	 724	 2000‐2013	(689)	 2013‐2014	(34)	

	
Table	11.	Sample	composition	in	residuals	sets	of	Hybrid	model	

Hybrid	model	 Input	nodes	 Delay	time	 Hidden	nodes	 Output	nodes	
Stockholm	30	Index	 5	 1	 8	 1	

Ericsson	 2	 1	 4	 1	
Hennes	&	Mauritz	 3	 1	 9	 1	

Nordea	 2	 1	 5	 1	

3.4. Comparison	of	Model	Performance	
In	this	article,	the	one‐step	forecast	is	suggested	and	the	actual	values	are	been	taken	to	make	
next	step	forecast.	
The	formula	is	showed:	
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The	 95%	 confidence	 intervals	 of	 predict	 value	 of	 these	 time	 series	 could	 show	 clearly	 the	
performance	of	the	three	models.	The	formula	shows	as	following:	

 SXSX 96.1ˆ,96.1ˆ  	

mn

XX
S




  2)^ˆ(
	

Where	S	is	the	standard	variance	
X	is	the	actual	value	

X̂ 	is	predict	value	

mn  	is	the	degree	of	freedom	

m	is	the	number	of	parameter	

n	is	the	number	of	objective	

To	evaluate	the	performance	of	the	forecasting	capability,	the	three	evaluation	statistics:	root	
mean	square	error	(RMSE),	mean	absolute	error	(MAE)	and	mean	absolute	percentage	forecast	
error	(MAPE)	to	each	model	are	used.	They	are	expressed	as	below:	


1

( ) ^ 2 /
n

i i
i
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4. Result		

4.1. The	OMX	Stockholm	30	Index	

	

Figure	9.	Stockholm	30	index	ARIMA	predict	output	
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Figure	10.	Stockholm	30	index	BP	network	predict	output	
	

	

Figure	11.	Stockholm	30	index	hybrid	predict	output	
	

Table	12.	The	OMX	Stockholm	30	Index	forecasting	performance	of	different	model	
Stockholm	30	Index	 ARIMA	 BP	neural	network	 Hybrid	model	

MAE	 16.9639	 16.76	 16.5558	

RMSE	 20.3115	 20.0892	 19.7820	

MAPE	 1.32%	 1.3%	 1.29%	

	
From	the	Figure	9	to	the	Figure	11,	the	performance	of	these	three	models	are	been	showed,	
which	 also	 give	 the	 actual	 vs	 forecast	 values	 with	 individual	 models	 of	 ARIMA,	 BP	 neural	
network,	and	hybrid	model.	The	predict	values	are	closely	 to	 the	expect	values.	The	predict	
interval	contain	all	the	expect	values	in	95%	confidence	interval.	From	the	Table	12,	in	the	OMX	
Stockholm	30	Index	data,	the	BP	neural	network	model	gives	slightly	better	forecasts	than	the	
ARIMA	model.	Applying	the	hybrid	model,	the	MAE,	RMSE	and	MAPE	are	less	than	the	ARIMA	
and	BP	neural	network	model,	which	means	the	hybrid	model	is	better	than	the	ARIMA	and	BP	
neural	network	model.		
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4.2. Ericsson	

	

Figure	12.	Ericsson	ARIMA	predict	output	
	

	

Figure	13.	Ericsson	BP	network	predict	output	
	

	

Figure	14.	Ericsson	hybrid	predict	output	
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Table	13.	The	Ericsson	forecasting	performance	of	different	model	
Ericsson	 ARIMA	 BP	neural	network	 Hybrid	model	

MAE	 0.2956	 0.2937	 0.2933	

RMSE	 0.4010	 0.3850	 0.3991	

MAPE	 2.4%	 2.38%	 2.37%	

	
From	the	Figure	12	to	the	Figure	13,	the	performance	of	these	three	models	are	been	showed,	
which	 also	 give	 the	 actual	 vs	 forecast	 values	 with	 individual	 models	 of	 ARIMA,	 BP	 neural	
network,	and	hybrid	model.	The	predict	values	are	closely	 to	 the	expect	values.	The	predict	
interval	contain	almost	the	expect	values	in	95%	confidence	interval.	From	the	Table	13,	in	the	
Ericsson	company’s	stock	data,	the	BP	neural	network	model	gives	slightly	better	forecasts	than	
the	ARIMA	model.	While	the	hybrid	model	is	better	than	the	ARIMA	model,	the	MAE	and	MAPE	
are	less	than	BP	neural	network	model.	The	hybrid	model	is	better	than	ARIMA	and	BP	neural	
network	models.	

4.3. Hennes	&	Mauritz	

	

Figure	15.	Hennes	&	Mauritz	ARIMA	predict	output	
	

	

Figure	16.	Hennes	&	Mauritz	BP	network	predict	output	
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Figure	17.	Hennes	&	Mauritz	hybrid	predict	output	
	

Table	14.	The	Hennes	&	Mauritz	forecasting	performance	of	different	model.	
Hennes	&	Mauritz	 ARIMA	 BP	neural	network	 Hybrid	model	

MAE	 4.3944	 4.3281	 4.3158	

RMSE	 6.1526	 5.9477	 5.8590	

MAPE	 1.62%	 1.59%	 1.59%	

	
From	the	Figure	15	to	the	Figure	17,	the	performance	of	these	three	models	are	been	showed,	
which	 also	 give	 the	 actual	 vs	 forecast	 values	 with	 individual	 models	 of	 ARIMA,	 BP	 neural	
network,	and	hybrid	model.	The	predict	values	are	closely	 to	 the	expect	values.	The	predict	
interval	contain	almost	the	expect	values	in	95%	confidence	interval.	From	the	Table	14,	in	the	
Hennes	&	Mauritz	company’s	stock	market	data,	the	BP	neural	network	model	gives	a	better	
forecasts	than	the	ARIMA	model.	Applying	the	hybrid	model,	the	MAE,	RMSE	and	MAPE	are	less	
than	ARIMA	and	BP	neural	network	model	respectively.			

4.4. Nordea	Bank	

	

Figure	18.	Nordea	Bank	ARIMA	predict	output	
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Figure	19.	Nordea	Bank	BP	network	predict	output	
	

	

Figure	20.	Nordea	Bank	hybrid	predict	output	
	

Table	15.	The	Nordea	forecasting	performance	of	different	model.	
Nordea	 ARIMA	 BP	neural	network	 Hybrid	model	

MAE	 1.6655	 1.6287	 1.5723	

RMSE	 2.0502	 1.9511	 1.9449	

MAPE	 1.99%	 1.93%	 1.88%	

	

From	the	Figure	18	to	the	Figure	20,	the	performance	of	these	three	models	are	been	showed,	
which	 also	 give	 the	 actual	 vs	 forecast	 values	 with	 individual	 models	 of	 ARIMA,	 BP	 neural	
network,	and	hybrid	model.	The	predict	values	are	closely	 to	 the	expect	values.	The	predict	
interval	 contain	all	 the	expect	values	 in	95%	confidence	 interval.	 From	 the	Table	15,	 in	 the	
Nordea	company’s	stock	market	data,	 the	BP	neural	network	model	gives	a	better	 forecasts	
than	the	ARIMA	model.	Applying	the	hybrid	model,	 the	MAE,	RMSE	and	MAPE	are	 less	than	
ARIMA	and	BP	neural	network	model	respectively.		
Compared	with	the	predict	of	the	OMX	Stockholm	30	Index,	Ericsson,	Hennes	&	Mauritz	and	
Nordea	Bank,	the	BP	neural	network	model	performances	better	than	ARIMA	model	in	the	OMX	



Scientific	Journal	of	Economics	and	Management	Research																																																																							Volume	4	Issue	3,	2022	

	ISSN:	2688‐9323																																																																																																																										

278	

Stockholm	30	Index,	the	Ericsson,	Hennes	&	Mauritz	and	Nordea	bank	stock	market	data,	while	
the	results	of	the	hybrid	models	show	that	the	hybrid	models	effectively	reduce	the	forecasting	
error	and	give	a	better	forecasting	of	the	OMX	Stockholm	30	Index,	Ericsson,	Hennes	&	Mauritz	
and	Nordea	Bank	than	ARIMA	and	BP	neural	network	model.	This	may	suggest	that	neither	the	
ARIMA	nor	the	BP	neural	network	model	captures	all	the	patterns	in	the	data	and	combining	
two	models	together	can	give	a	better	forecasting	value	of	the	Swedish	capital	market.	

5. Conclusion	

In	 this	 paper,	 the	 Swedish	 capital	markets	 have	 been	 tested	 to	 see	 if	 they	 have	 fractal	 and	
chaotic	characteristics,	which	represent	that	the	Swedish	capital	markets	system	are	not	just	
purely	random	walk	system.	The	Fractal	Market	Hypothesis	based	on	the	chaos	theory	which	
can	provide	a	better	explanation	for	the	Swedish	capital	markets.	The	Swedish	capital	markets	
represent	 a	 state	 of	 complex,	 unstable	 irregular	 behavior,	 unpredictable	 results	 regarding	
deterministic	nonlinear	systems	 that	are	sensitive	 to	 their	 initial	 condition,	which	make	the	
Swedish	capital	markets	behavior	extremely	chaotic	and	difficult	to	predict.	After	comparing	
all	 the	 models,	 the	 forecasting	 performance	 of	 each	 model	 is	 assessed	 by	 three	 statistical	
measures:	RMSE,	MAE,	MAPE.	The	results	of	the	statistical	measures	suggest	that	the	hybrid	
model	can	be	an	effective	tool	to	improve	the	forecasting	accuracy	obtained	by	either	of	the	
models	used	separately.	Although	both	the	ARIMA	and	BP	neural	network	models	are	effective	
as	forecasting	models,	they	could	not	capture	all	the	patterns	of	the	Swedish	capital	market	and	
neither	can	be	the	best	model	in	every	forecasting	situation	of	the	time	series	data.	The	hybrid	
model	which	 combined	 the	 linear	ARIMA	and	 the	nonlinear	BP	neural	network	model	gave	
better	forecasting	of	the	Swedish	capital	market	and	the	hybrid	model	can	also	capture	more	
patterns	 in	 the	 data	 than	 the	 other	 two	models.	 Then	 the	 hybrid	 model	 can	 give	 a	 better	
explanation	for	the	Swedish	capital	markets.	
Based	on	the	characteristics	of	the	capital	market,	the	hybrid	model	can	give	a	better	forecasting	
than	obtained	by	either	of	the	models	used	separately.	Maybe	various	combining	methods	will	
be	found	and	different	models,	linear	models	or	nonlinear	models,	can	be	combined	to	improve	
forecasting	accuracy.	
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