Analysis of the Impact of Industrial Development on Tax Revenue: An Empirical Study based on Data from 2002 to 2021

Mengxue Wang¹, Wenhui Ma², Jianfeng Jiao³, Yuchen Qi⁴

¹ School of International Economics and Trade, Anhui University of Finance and Economics, Bengbu 233000, China

² School of Finance and Public Management, Anhui University of Finance and Economics, Bengbu 233000, China

³ School of Economics, Anhui University of Finance and Economics, Bengbu 233000, China

⁴ School of Animal Science and Technology, Anhui Agricultural University, Hefei 230000, China

Abstract

As one of the main means of national macroeconomic regulation and control, tax policy plays an important guiding role in accelerating the realization of economic restructuring. With the reform of the supply side, the development of the three major industries is closely linked to tax policies. This article selects historical data from the National Bureau of Statistics from 2002 to 2021 to study the dynamic relationship between tax revenue and industrial development, and uses E-views software to conduct an empirical analysis of it. After conducting a series of tests on the model and removing unimportant explanatory variables, the final conclusion is that the second industry has the most significant impact on tax revenue.

Keywords

Tax Policy; Industrial Development; Least Squares.

1. Introduction

As one of the main sources of national financial revenue, tax affects macroeconomic regulation. Since the reform and development, China has adopted a series of tax policies, promoting the upgrading of industrial structure and the transformation of economic growth patterns. Ma Jinying proposed that taxation will affect the adjustment of regional industrial structure, which is embodied in a positive impact on the upgrading of industrial structure and a negative impact on the rationalization of industrial structure. In turn, the industrial structure will also affect tax revenue. Colin Clark uses econometric analysis to propose that one of the driving forces of economic growth is the development and change of industrial structure.

Therefore, there is a certain interaction and reaction relationship between tax and industrial structure. A thorough study of the dynamic relationship between them has certain theoretical and practical significance for further strengthening tax collection and management and making rational use of tax control measures in the future.

2. Variables and Data

2.1. Explanatory Variable and Explained Variable

- X1 added value of the primary industry/100 million yuan,
- X2 added value of the secondary industry/100 million yuan,
- X3 added value of the tertiary industry/100 million yuan,
- Y Tax revenue/100 million yuan.

2.2. Statistics on China's Tax Revenue and Three Major Industries from 2002 to 2021

		Unit:	100 million yuan	
Year	Tax Y	Added value of primary industry X1	Added value of the secondary industry X2	Added value of the tertiary industry X3
2002	17636.45	16190.2	54104.1	51423.1
2003	20017.31	16970.2	62695.8	57756.0
2004	24165.68	20904.3	74285.0	66650.9
2005	28778.54	21806.7	88082.2	77430.0
2006	34804.35	23317.0	104359.2	91762.2
2007	45621.97	27674.1	126630.5	115787.7
2008	54223.79	32464.1	149952.9	136827.5
2009	59521.59	33583.8	160168.8	154765.1
2010	73210.79	38430.8	191626.5	182061.9
2011	89738.39	44781.5	227035.1	216123.6
2012	100614.28	49084.6	244639.1	244856.2
2013	110530.70	53028.1	261951.6	277983.5
2014	119175.31	55626.3	277282.8	310654.0
2015	124922.20	57774.6	281338.9	349744.7
2016	130360.73	60139.2	295427.8	390828.1
2017	144369.87	62099.5	331580.5	438355.9
2018	156402.86	64745.2	364835.2	489700.8
2019	158000.46	70473.6	380670.6	535371.0
2020	154312.29	78030.9	383562.4	551973.7
2021	172735.67	83085.5	450904.5	609679.7

Table 1. Statistics on China's tax revenue and three major industries

3. Establishment and Verification of Models

3.1. Model Settings

Figure 1. A scatter plot of the three major industries and taxes

Open E-views, create a new work file, and enter the time range: 2002-2021.

Enter the relevant commands to obtain the following scatter diagram.

It can be seen that there is a certain correlation between China's tax revenue and the three major industries, and the model can be set as follows.

3.2. Parameter Estimation

The results are estimated using the ordinary least square method as shown in the figure below.

ew Proc Object Print	Name Freeze	Estimate Forecas	st Stats Reside	5
Dependent Variable: Y Method: Least Square Date: 12/03/22 Time: Sample: 2002 2021 Included observations:	s 23:07 20		- ^ ^	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-10760.21	6756.734	-1.592517	0.1308
X1	0.402146	0.701710	0.573094	0.5745
X2	0.385793	0.132101	2.920442	0.0100
X3	-0.013468	0.047099	-0.285954	0.7786
R-squared	0.987900	Mean depen	dent var	90957.16
Adjusted R-squared	0.985632	S.D. depend	ent var	52770.31
S.E. of regression	6325.438	Akaike info c	riterion	20.51940
Sum squared resid	6.40E+08	Schwarz crite	erion	20.71855
og likelihood	-201.1940	Hannan-Qui	nn criter.	20.55828
-statistic	435.4555	Durbin-Wats	on stat	0.342778
Drob/E atatiatia)	0 00000			

Figure 2. Least-squares method of estimation

The Chinese tax revenue function is:

s=(0.7017)(0.1321)(0.0471) t=(0.5731) (2.9204) (-0.2860) =0.9880 =0.9856 F=435.4555 D.W.=0.3428

3.3. Model Inspection and Correction

3.3.1. Economic Significance Test

China's tax revenue is positively correlated with the primary and secondary industries. When the secondary and tertiary industries remain unchanged, the primary industry will increase by one unit, and China's tax revenue will increase by one unit; When the primary and tertiary industries remain unchanged, the secondary industry will increase by one unit, and the tax revenue will increase by one unit; Tax revenue is negatively correlated with the tertiary industry. When the primary and secondary industries remain unchanged, the tertiary industry increases by one unit, while China's tax revenue decreases by one unit.

3.3.2. Goodness of Fit Test

From the chart, it can be seen that the determinability coefficient is very high, while the t values of X1 and X3 are not significant. At the same time, the sign of X3 is in the opposite direction to the trend of the scatter plot, which can be inferred that there is a serious multicollinearity in the model. The method of stepwise regression can be used to solve the problem.

		Corre	lation	
	Y	X1	X2	X3
Y	1.000000	0.990301	0.993790	0.978292
X1	0.990301	1.000000	0.994997	0.982742
X2	0.993790	0.994997	1.000000	0.985401
X3	0.978292	0.982742	0.985401	1.000000

Figure 3. Correlation test

Perform correlation testing on all variables to obtain the following figure:

It is found that X2 is the explanatory variable with the closest relationship to the explained variable, whereby a unitary regression equation can be established.

1) Command: LS Y C X2

Equation: UNTITLE	D W	orkfile:	UNTITL	D::Untit	tled\		
/iew Proc Object Print	Name	Freeze	Estimate	Forecast	Stats	Resids	
Dependent Variable: ` Method: Least Square Date: 12/03/22 Time Sample: 2002 2021 Included observations	Y es : 23:13 : 20						
Variable	Co	efficient	t Std.	Error	t-Sta	atistic	Prob.
С	-71	63.832	2 291	9.829	-2.45	3511	0.0246
X2	0.	435017	0.01	1481	37.8	9145	0.0000
R-squared	0.	987618	8 Mean	depend	ent va	ar	90957.16
Adjusted R-squared	0.	986930) S.D. (depende	nt var		52770.31
S.E. of regression	60	32.812	Akaik	e info cri	terion		20.34245
Sum squared resid	6.5	55E+08	Schw	arz criter	rion		20.44203
Log likelihood	-20	1.4245	Hann	an-Quinr	n crite	er.	20.36189
F-statistic	14	35.762	2 Durbi	n-Watso	n stat		0.346718
Prob(E_statistic)	0	00000					

Figure 4. Least-squares method of estimation

The regression result is:

s=0.0115 t=37.8915 =0.9876 =0.9869 F=1435.762 D.W.=0.3467

With X2 reserved, add other variables in turn: 2) Command: LS Y C X2 X1

Equation: UNTITL	D Workfile:	UNTITLED::Unt	titled\	
/iew Proc Object Print	Name Freeze	Estimate Forecas	st Stats Resids	;]
Dependent Variable: ` Method: Least Square Date: 12/03/22 Time Sample: 2002 2021 Included observations	Y es : 23:15 :: 20			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-9650.913	5380.657	-1.793631	0.0907
X2	0.370307	0.117192	3.159846	0.0057
X1	0.375360	0.676388	0.554948	0.5862
R-squared	0.987839	Mean depen	dent var	90957.16
Adjusted R-squared	0.986408	S.D. depend	ent var	52770.31
S.E. of regression	6152.237	Akaike info c	riterion	20.42450
Sum squared resid	6.43E+08	Schwarz crite	erion	20.57386
Log likelihood	-201.2450	Hannan-Qui	nn criter.	20.45366
F-statistic	690.4352	Durbin-Wats	on stat	0.327130
Prob(F-statistic)	0.000000			

Figure 5. Least-squares method of estimation

3) Command: LS Y C X2 X3

ISSN: 2688-9323

iew Proc Object Print	Name Freeze	Estimate Foreca	st Stats Resids	
Dependent Variable: N Method: Least Square Date: 12/03/22 Time Sample: 2002 2021 Included observations	Ƴ es : 23:18 : 20			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-7846.358	4361.165	-1.799143	0.0898
X2	0.449742	0.069294	6.490327	0.0000
X3	-0.009865	0.045746	-0.215645	0.8318
R-squared	0.987652	Mean depen	dent var	90957.16
Adjusted R-squared	0.986199	S.D. depend	lent var	52770.31
S.E. of regression	6199.240	Akaike info o	riterion	20.43972
Sum squared resid	6.53E+08	Schwarz crit	erion	20.58908
_og likelihood	-201.3972	Hannan-Qui	nn criter.	20.46888
-statistic	679.8766	Durbin-Wats	on stat	0.363273
Prob(F-statistic)	0 000000			

Figure 6. Least-squares method of estimation

4) Command: LS Y C X1 X2 X3

Dependent Variable: Y				
Method: Least Square	s			
Date: 12/03/22 Time:	23:07			
Sample: 2002 2021				
included observations:	20			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-10760.21	6756.734	-1.592517	0.1308
X1	0.402146	0.701710	0.573094	0.5745
X2	0.385793	0.132101	2.920442	0.0100
X3	-0.013468	0.047099	-0.285954	0.7786
R-squared	0.987900	Mean depen	dent var	90957.16
Adjusted R-squared	0.985632	S.D. depend	ent var	52770.31
S.E. of regression	6325.438	Akaike info c	riterion	20.51940
Sum squared resid	6.40E+08	Schwarz crit	erion	20.71855
Log likelihood	-201.1940	Hannan-Qui	nn criter.	20.55828
F-statistic	435.4555	Durbin-Wats	on stat	0.342778
Deels (C. statistic)	0 000000			

Figure7. Least-squares method of estimation

Result analysis: After introducing variables X1 and X3 into the optimal simple regression equation Y=f (X2), both of them improved, but the T-test failed. Therefore, delete variables X1 and X3. The regression equation obtained is.

3.3.3. Autocorrelation Test

1) Graphical method

From the graph, it can be seen that the sequence diagram of residuals is of a cyclic type, not with frequent symbol changes, but with consecutive positive values followed by consecutive negative values followed by consecutive positive values, indicating the existence of a positive correlation.

Figure 8. Sequence plots of residuals

2) Partial correlation coefficient test method

After entering the command, as shown in the following figure, it is easy to know that there is a first-order autocorrelation.

Equation: UNTIT	LED Workfile: UNT	TTLE	D::Unti	tled\		
View Proc Object Pri	nt Name Freeze Estin	nate	Forecast	Stats F	Resids	
	Correlogram o	f Re:	siduals	5		
Date: 12/03/22 Tin Sample: 2002 2021 Included observation	ne: 23:22 ns: 20					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
i j		1	0.624	0.624	9.0125	0.003
E 📃 E	1 🔲 1	2	0.338	-0.083	11.811	0.003
C 1 C	1 🔲 1	3	0.032	-0.239	11.837	0.008
I 🔲 I	1 🗾 🛄 📜	4	-0.205	-0.180	12.990	0.011
í 🔤 👘	I 🔲 I	5	-0.366	-0.162	16.910	0.005
E	1 🔲 1	6	-0.436	-0.140	22.872	0.001
1 1	1 1 1	7	-0.366	-0.013	27.397	0.000
r 💼 r	1 🖬 1	8	-0.296	-0.131	30.612	0.000
r 🖬 r	1 I 🖬 I	9	-0.194	-0.106	32.115	0.000
1 👘 🖬 👘 1		10	-0.070	-0.042	32.332	0.000
10 I	1 🖬 1	11	0.005	-0.111	32,334	0.001
5 423		10	0.050	0 400	20 400	0.004

Figure 9. Partial correlation coefficient test

3) Correction of autocorrelation

Generalized difference method:

Based on the OLS estimation, DW=0.3428 can be obtained, which is equal to 0.8286. Using the commands GENRTX2=X2-0.8286 * X2 (- 1) and GENRTY=Y-0.8286 * Y (- 1), respectively, make a generalized difference for X2 and Y. Then perform OLS estimation for TY and TX2, and enter LS TY C TX2 on the command line to obtain the following figure:

Where, DW=0.3428, compared to the previous DW value, there is no significant change, that is, the first order autocorrelation has not been eliminated, possibly due to the presence of heteroscedasticity or other reasons.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1851.062	1719.899	1.076262	0.2968
тх	0.367805	0.027230	13.50742	0.0000
R-squared	0.914766	Mean depen	dent var	22894.13
Adjusted R-squared	0.909752	S.D. depend	ent var	10573.51
S.E. of regression	3176.420	Akaike info c	riterion	19.06420
Sum squared resid	1.72E+08	Schwarz crite	erion	19.16361
Log likelihood	-179.1099	Hannan-Quir	nn criter.	19.08102
F-statistic Prob(F-statistic)	182.4505 0.000000	Durbin-Wats	on stat	0.342759

F igure 10. Co	rrection of	autocorrelation
-----------------------	-------------	-----------------

3.3.4. Heteroscedasticity test

1) Park inspection

In the window for estimating regression equations using all sample data and the OLS method, select View/Diagnostic/Heteroskedasticity Tests/Harvey, and add "CLOG (X)" to the dialog window Registers to obtain auxiliary regression equations and correlation test statistics. As shown in the following figure,

ISSN: 2688-9323

iew Proc Object [Print]	Name [Treeze] [L	sumate rorecas	st Stats Thesius	•]
leteroskedasticity Tes	st: Harvey			
-statistic	9.342185	Prob. F(1,18)	0.0068
Obs*R-squared	6.833532	Prob. Chi-So	uare(1)	0.0089
Scaled explained SS	7.187017	Prob. Chi-So	juare(1)	0.0073
Dependent Variable: L Method: Least Square: Date: 12/03/22 Time:	RESID2 s 23:37			
ncluded observations:	20			
Variable	20 Coefficient	Std. Error	t-Statistic	Prob.
Variable C	20 Coefficient -9.714374	Std. Error 8.363006	t-Statistic	Prob.
Variable C LOG(X2)	20 Coefficient -9.714374 2.100507	Std. Error 8.363006 0.687227	t-Statistic -1.161589 3.056499	Prob. 0.2606 0.0068
Variable C LOG(X2)	20 Coefficient -9.714374 2.100507 0.341677	Std. Error 8.363006 0.687227 Mean depen	t-Statistic -1.161589 3.056499 dent var	Prob. 0.2606 0.0068 15.81243
Variable C LOG(X2) R-squared	20 Coefficient -9.714374 2.100507 0.341677 0.305103	Std. Error 8.363006 0.687227 Mean depen S.D. depend	t-Statistic -1.161589 3.056499 dent var ent var	Prob. 0.2606 0.0068 15.81243 2.337356
Variable C LOG(X2) R-squared Adjusted R-squared S.E. of regression	20 Coefficient -9.714374 2.100507 0.341677 0.305103 1.948431	Std. Error 8.363006 0.687227 Mean depen S.D. depend Akaike info c	t-Statistic -1.161589 3.056499 dent var ent var riterion	Prob. 0.2606 0.0068 15.81243 2.337356 4.266565
Variable C LOG(X2) R-squared Adjusted R-squared S.E. of regression Sum squared resid	20 Coefficient -9.714374 2.100507 0.341677 0.305103 1.948431 68.33489	Std. Error 8.363006 0.687227 Mean depen S.D. depend Akaike info c Schwarz critt	t-Statistic -1.161589 3.056499 dent var ent var riterion erion	Prob. 0.2606 0.0068 15.81243 2.337356 4.266565 4.366138
C LOG(X2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	20 Coefficient -9.714374 2.100507 0.341677 0.305103 1.948431 68.33489 -40.66565	Std. Error 8.363006 0.687227 Mean depen S.D. depend Akaike info c Schwarz crité Hannan-Qui	t-Statistic -1.161589 3.056499 dent var ent var riterion ent oriter.	Prob. 0.2606 0.0068 15.81243 2.337356 4.266565 4.366138 4.286003

Figure 11. Park inspection

As can be seen from the above figure, F=9.3422, with a P value of 0.0068, which is less than the significant level of 0.05. Therefore, the original assumption is rejected and the model is considered to have heteroscedasticity.

2) Correction of Heteroscedasticity

Set the weight variable,

GENR W1=1/X2^2.1005,

GENR W2=1/X2^0.5,

GENR W3=1/ABS(RESID),

GENR W4=1/RESID^2.

Estimating models using weighted least squares method,

In the E-views command window, type: LS (W=W1) Y C X2 as shown below.

View Proc Object Print Name Freeze Estimate Forecast Stats Resids Dependent Variable: Y Method: Least Squares Date: 12/03/22 Time: 23:41 Sample: 1 20
Dependent Variable: Y Method: Least Squares Date: 12/03/22 Time: 23:41 Sample: 1 20
Included observations: 20 Weighting series: W1 Weight type: Inverse standard deviation (EViews default scaling)
Variable Coefficient Std. Error t-Statistic Prob.
C -4715.661 806.3266 -5.848327 0.0000
X2 0.400154 0.011488 34.83262 0.0000
Weighted Statistics
R-squared 0.985381 Mean dependent var 34918.73
Adjusted R-squared 0.984569 S.D. dependent var 24075.44
S.E. of regression 2138.975 Akaike info criterion 18.26868
Sum squared resid 82353841 Schwarz criterion 18.36825
Log likelihood -180.6868 Hannan-Quinn criter. 18.28812
F-statistic 1213.312 Durbin-Watson stat 0.514771
Prob(F-statistic) 0.000000 Weighted mean dep. 21753.19
Unweighted Statistics
R-squared 0.970190 Mean dependent var 90957.16
Adjusted R-squared 0.968534 S.D. dependent var 52770.31
S.E. of regression 9360.815 Sum squared resid 1.58E+09 Durbin-Watson stat 0.115522

Figure 12. Correction of Heteroscedasticity

In the E-views command window, type: LS (W=W2) Y C X2 as shown below.

ISSN: 2688-9323

view Proc Object Print	Name Freeze E	stimate Forecas	st Stats Reside	s
Dependent Variable: Y				
Method: Least Square	s			
Date: 12/03/22 Time:	23:43			
Sample: 1 20				
Included observations:	20			
vveighting series: vv2	the second second second second		· · · · · · · · · · · · · · · · · · ·	
veight type: inverse s	tandard deviati	on (Eviews de	fault scaling)	1072
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-8299.255	1660.716	-4.997396	0.0001
X2	0.440051	0.008947	49.18633	0.0000
	Weighted	Statistics		
R-squared	0.992615	Mean dependent var		74659.79
Adjusted R-squared	0.992204	S.D. dependent var		27664.71
S.E. of regression	4459.067	Akaike info criterion		19.73791
Sum squared resid	3.58E+08	Schwarz criterion		19.83748
Log likelihood	-195.3791	Hannan-Quinn criter.		19.75734
F-statistic	2419.295	Durbin-Watson stat		0.330680
Prob(F-statistic)	0.000000	Weighted me	ean dep.	58924.23
	Unweighter	d Statistics		
R-squared	0.987486	Mean dependent var		90957.16
Adjusted R-squared	0.986791	S.D. dependent var		52770.31
S.E. of regression	6064.944	Sum squared resid 6.62E		6.62E+08
Durbin-Watson stat	0.356589			

Figure 13. Correction of Heteroscedasticity

In the E-views command window, type: LS (W=W3) Y C X2 as shown below.

Equation: UNTITLE	D Workfile: U Name Freeze	INTITLED::Unt	itled\ st Stats Reside	,	z
Dependent Variable: Y Method: Least Square Date: 12/03/22 Time: Sample: 1 20 Included observations: Weighting series: W3 Weight type: Inverse s	s 23:45 20 tandard deviati	on (EViews de	fault scaling)		~
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
с	-7211.732	137.7958	-52.33636	0.0000	
X2	0.434156	0.001343	323.2223	0.0000	
	Weighted	Statistics			
R-squared	0.999828	Mean dependent var		51818.62	
Adjusted R-squared	0.999818	S.D. dependent var		88865.98	
S.E. of regression	1023.115	Akaike info criterion		16.79373	
Sum squared resid	18841756	Schwarz criterion		16.89330	
Log likelihood	-165.9373	Hannan-Quinn criter.		16.81317	
F-statistic	104472.7	Durbin-Watson stat		0.462330	
Prob(F-statistic)	0.000000	Weighted mean dep.		26758.50	
	Unweighted	Statistics			
R-squared	0.987592	Mean dependent var 9095		90957.16	
Adjusted R-squared	0.986903	S.D. dependent var 5277		52770.31	
S.E. of regression	6039.147	Sum squared resid 6.56E+08		6.56E+08	
Durbin-Watson stat	0.343752				~

Figure 14. Correction of Heteroscedasticity

In the E-views command window, type: LS (W=W4) Y C X2 as shown below.

Equation: UNTITLE View Proc Object Print Dependent Variable: Y Method: Least Square Date: 12/03/22 Time: Sample: 1 20 Included observations: Weighting series: W4 Weight type: Inverse st	D Workfile: U Name Freeze F s 23:46 20 tandard deviation	Stimate Forecas	itted∖		,
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	-7190.087	16.81211	-427.6731	0.0000	
X2	0.433958	0.000259	1677.657	0.0000	
	Weighted	Statistics			
R-squared	0.999994	Mean dependent var		26758.50	
Adjusted R-squared	0.999993	S.D. dependent var		86562.88	
S.E. of regression	69.77102	Akaike info criterion		11.42295	
Sum squared resid	87623.91	Schwarz criterion		11.52253	
Log likelihood	-112.2295	Hannan-Quinn criter.		11.44239	
F-statistic	2814534.	Durbin-Watson stat		1.215236	
Prob(F-statistic)	0.000000	Weighted mean dep.		20305.58	
	Unweighted	d Statistics			
R-squared	0.987586	Mean dependent var		90957.16	
Adjusted R-squared	0.986896	S.D. dependent var		52770.31	
S.E. of regression	6040.701	Sum squared resid 6		6.57E+08	
Durbin-Watson stat	0.343065				~

Figure 15. Correction of Heteroscedasticity

After estimation and testing, it is found that using the weight W4 has the best effect. Below is the result of using the weight W4.

Perform a White test to observe the adjustment of heteroscedasticity. The White test corresponding to the figure below shows that the P value of the weight W4 is large, so it is better to select this model.

s=0.0003 t=1677.657 =0.9999 =0.9999 F=2814534 D.W.=1.2152

Compared with the original model, this model has improved the decision coefficient, t statistics and F statistics, and all of them are very good, indicating that the regression model with weighted least squares method is more suitable for samples than the regression model estimated with least squares method without considering other problem.

4. Conclusion and Recommendations

Based on the empirical analysis of this experiment, we find that the primary and tertiary industries - agriculture and services - have little correlation with tax revenue, while the secondary industry has a closer and positive correlation with tax revenue. In particular, it should be mentioned that the impact of the epidemic may have weakened the role of related service industries in taxation, leading to the conclusion that the tertiary industry has little relevance to taxation. In general, the tertiary industry is positively correlated with tax revenue, with a positive long-term impact. Although the effect is not significant in a short period of time, the development of the tertiary industry has broad prospects. I believe that in the future, the tertiary industry can contribute more to tax revenue.

Therefore, this article proposes the following policy recommendations:

Optimize the industrial structure, promote the upgrading of the industrial structure, vigorously develop the tertiary industry while taking into account the secondary industry, gradually optimize the internal structure of the tertiary industry, guide enterprises to promote the reform of the service industry through tax policies, reduce the proportion of traditional service industries, increase support for high-tech enterprises, and focus on the development of new service industries such as the Internet and finance.

References

- [1] Jiaming Wang:Research on the Correlation between Industrial Structure and Taxation in Jilin Province, Jilin University of Finance and Economics, (2018)No.3.
- [2] Jiuling Li,Yucheng Zhu,Xingxin Li:Research on the Relationship between Tax Revenue and Industrial Structure Transformation and Upgrading: A Case Study of Shanghai,Finance and Taxation Observation, (2017) No.8, p.45-48.
- [3] Kexin Cheng:Comparative Study on the Impact of Fuxiaquan Industrial Structure on Tax Revenue, (MS. , Jimei University, China 2020).
- [4] Xiaoman Xiong, Guiping Chen: Empirical Study on Tax Incentive Policies and Industrial Structure Transformation and Upgrading-Based on SVAR Analysis of Data from Guangdong Province from 2001 to 2011, Management Scholar Academic Edition, (2015) No.2, p.14-18.
- [5] Yanmin Li,Deying Liu:Quantitative Analysis of the Relationship between Taxation and Industrial Structure in Jilin Province,Taxation and Economy,(2013)No.9,p.33-37.
- [6] Yuting Zheng,Peng Liu,Di Wen:Empirical Study on the Impact of Industrial Development on Taxation in Anhui Province Based on VAR Model,Market Weekly,(2018)No.9,p.95-97.
- [7] Zhi Wang:the relationship between the tax burden of Tertiary sector of the economy and the development of Tertiary sector of the economy in Xinjiang -- an empirical analysis based on VAR model,Economic Forum,(2017)No.8,p.17-21.